57,798 research outputs found

    Residual Minimizing Model Interpolation for Parameterized Nonlinear Dynamical Systems

    Full text link
    We present a method for approximating the solution of a parameterized, nonlinear dynamical system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the governing equations. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. It is particularly appropriate when one wishes to approximate the states at a few points in time without time marching from the initial conditions. We prove some interesting characteristics of the scheme including an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and conductive heat transfer - a nonlinear parabolic PDE with a random field model for the thermal conductivity.Comment: 28 pages, 8 figures, 2 table

    The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows

    Full text link
    The Gauss--Newton with approximated tensors (GNAT) method is a nonlinear model reduction method that operates on fully discretized computational models. It achieves dimension reduction by a Petrov--Galerkin projection associated with residual minimization; it delivers computational efficency by a hyper-reduction procedure based on the `gappy POD' technique. Originally presented in Ref. [1], where it was applied to implicit nonlinear structural-dynamics models, this method is further developed here and applied to the solution of a benchmark turbulent viscous flow problem. To begin, this paper develops global state-space error bounds that justify the method's design and highlight its advantages in terms of minimizing components of these error bounds. Next, the paper introduces a `sample mesh' concept that enables a distributed, computationally efficient implementation of the GNAT method in finite-volume-based computational-fluid-dynamics (CFD) codes. The suitability of GNAT for parameterized problems is highlighted with the solution of an academic problem featuring moving discontinuities. Finally, the capability of this method to reduce by orders of magnitude the core-hours required for large-scale CFD computations, while preserving accuracy, is demonstrated with the simulation of turbulent flow over the Ahmed body. For an instance of this benchmark problem with over 17 million degrees of freedom, GNAT outperforms several other nonlinear model-reduction methods, reduces the required computational resources by more than two orders of magnitude, and delivers a solution that differs by less than 1% from its high-dimensional counterpart

    MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

    Full text link
    CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.Comment: 26 pages, 6 figure

    Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations

    Full text link
    This work derives a residual-based a posteriori error estimator for reduced models learned with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic partial differential equations with control inputs. It is shown that quantities that are necessary for the error estimator can be either obtained exactly as the solutions of least-squares problems in a non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator is used to bound the error of the reduced-model predictions for new initial conditions and new control inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow of the proposed approach from data to reduced models to certified predictions

    Dimensional hyper-reduction of nonlinear finite element models via empirical cubature

    Get PDF
    We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accuracy.Peer ReviewedPostprint (published version

    Least-squares finite element method for fluid dynamics

    Get PDF
    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples

    A least-squares finite element method for incompressible Navier-Stokes problems

    Get PDF
    A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to a saddle-point problem by the classic mixed method, and can thus accommodate equal-order interpolations. This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at Reynolds number up to 900 are presented
    • …
    corecore