7,356 research outputs found

    A framework for high dimensional data reduction in the microarray domain

    Full text link
    Microarray analysis and visualization is very helpful for biologists and clinicians to understand gene expression in cells and to facilitate diagnosis and treatment of patients. However, a typical microarray dataset has thousands of features and a very small number of observations. This very high dimensional data has a massive amount of information which often contains some noise, non-useful information and small number of relevant features for disease or genotype. This paper proposes a framework for very high dimensional data reduction based on three technologies: feature selection, linear dimensionality reduction and non-linear dimensionality reduction. In this paper, feature selection based on mutual information will be proposed for filtering features and selecting the most relevant features with the minimum redundancy. A kernel linear dimensionality reduction method is also used to extract the latent variables from a high dimensional data set. In addition, a non-linear dimensionality reduction based on local linear embedding is used to reduce the dimension and visualize the data. Experimental results are presented to show the outputs of each step and the efficiency of this framework. © 2010 IEEE

    Identification of disease-causing genes using microarray data mining and gene ontology

    Get PDF
    Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods: We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers

    Study of meta-analysis strategies for network inference using information-theoretic approaches

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Reverse engineering of gene regulatory networks (GRNs) from gene expression data is a classical challenge in systems biology. Thanks to high-throughput technologies, a massive amount of gene-expression data has been accumulated in the public repositories. Modelling GRNs from multiple experiments (also called integrative analysis) has; therefore, naturally become a standard procedure in modern computational biology. Indeed, such analysis is usually more robust than the traditional approaches focused on individual datasets, which typically suffer from some experimental bias and a small number of samples. To date, there are mainly two strategies for the problem of interest: the first one (”data merging”) merges all datasets together and then infers a GRN whereas the other (”networks ensemble”) infers GRNs from every dataset separately and then aggregates them using some ensemble rules (such as ranksum or weightsum). Unfortunately, a thorough comparison of these two approaches is lacking. In this paper, we evaluate the performances of various metaanalysis approaches mentioned above with a systematic set of experiments based on in silico benchmarks. Furthermore, we present a new meta-analysis approach for inferring GRNs from multiple studies. Our proposed approach, adapted to methods based on pairwise measures such as correlation or mutual information, consists of two steps: aggregating matrices of the pairwise measures from every dataset followed by extracting the network from the meta-matrix.Peer ReviewedPostprint (author's final draft

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso

    Full text link
    The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show that, with particular choices of kernel functions, non-redundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments with thousands of features.Comment: 18 page
    • …
    corecore