279 research outputs found

    Spanning Properties of Theta-Theta Graphs

    Full text link
    We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of k cones, for some fixed integer k > 1, and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio 11.67, for k' >= 6. In this paper we establish a first spanning ratio of 7.827.82 for Theta-Theta graphs, for the same values of kk. We also extend the class of Theta-Theta spanners with parameter 6k', and establish a spanning ratio of 16.7616.76 for k' >= 5. We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to 4.64 as k' increases to 8. These are the first results on the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table

    Undirected Connectivity of Sparse Yao Graphs

    Full text link
    Given a finite set S of points in the plane and a real value d > 0, the d-radius disk graph G^d contains all edges connecting pairs of points in S that are within distance d of each other. For a given graph G with vertex set S, the Yao subgraph Y_k[G] with integer parameter k > 0 contains, for each point p in S, a shortest edge pq from G (if any) in each of the k sectors defined by k equally-spaced rays with origin p. Motivated by communication issues in mobile networks with directional antennas, we study the connectivity properties of Y_k[G^d], for small values of k and d. In particular, we derive lower and upper bounds on the minimum radius d that renders Y_k[G^d] connected, relative to the unit radius assumed to render G^d connected. We show that d=sqrt(2) is necessary and sufficient for the connectivity of Y_4[G^d]. We also show that, for d = 2/sqrt(3), Y_3[G^d] is always connected. Finally, we show that Y_2[G^d] can be disconnected, for any d >= 1.Comment: 7 pages, 11 figure

    07151 Abstracts Collection -- Geometry in Sensor Networks

    Get PDF
    From 9.4.2007 to 13.4.07, the Dagstuhl Seminar 07151 ``Geometry in Sensor Networks\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    On the Complexity of Reducing the Energy Drain in Multihop Ad Hoc Networks

    Get PDF
    Numerous studies on energy-efficient routing for Multihop Ad Hoc Networks (MANET) look at extending battery life by minimizing the cost at the transmitting node. In this paper, we study the complexity of energy efficient routing when the energy cost of receiving packets is also considered. We first prove that, surprisingly, even when all nodes transmit at the same power, finding a simple unicast path that guarantees enough remaining energy locally at each node in the network then becomes an NP-complete problem. Second, we define formally the problem of finding a virtual backbone that minimized the overall energy cost and prove that this leads to a new NP-complete problem, that we name Connected Exact Cover. Finally, we provide a fully distributed algorithm to reduce the energy drain due to the number of redundant receptions in MANET protocols by offering a modification of the Multi-Point Relay selection scheme and give some provably optimal approximation bounds

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    Odd Yao-Yao Graphs are Not Spanners

    Get PDF
    It is a long standing open problem whether Yao-Yao graphs YY_{k} are all spanners [Li et al. 2002]. Bauer and Damian [Bauer and Damian, 2012] showed that all YY_{6k} for k >= 6 are spanners. Li and Zhan [Li and Zhan, 2016] generalized their result and proved that all even Yao-Yao graphs YY_{2k} are spanners (for k >= 42). However, their technique cannot be extended to odd Yao-Yao graphs, and whether they are spanners are still elusive. In this paper, we show that, surprisingly, for any integer k >= 1, there exist odd Yao-Yao graph YY_{2k+1} instances, which are not spanners

    The localized Delaunay triangulation and ad-hoc routing in heterogeneous environments

    Get PDF
    Ad-Hoc Wireless routing has become an important area of research in the last few years due to the massive increase in wireless devices. Computational Geometry is relevant in attempts to build stable, low power routing schemes. It is only recently, however, that models have been expanded to consider devices with a non-uniform broadcast range, and few properties are known. In particular, we find, via both theoretical and experimental methods, extremal properties for the Localized Delaunay Triangulation over the Mutual Inclusion Graph. We also provide a distributed, sub-quadratic algorithm for the generation of the structure
    • …
    corecore