7,293 research outputs found

    On dynamic monopolies of graphs with general thresholds

    Get PDF
    Let GG be a graph and Ο„:V(G)β†’N{\mathcal{\tau}}: V(G)\rightarrow \Bbb{N} be an assignment of thresholds to the vertices of GG. A subset of vertices DD is said to be dynamic monopoly (or simply dynamo) if the vertices of GG can be partitioned into subsets D0,D1,...,DkD_0, D_1,..., D_k such that D0=DD_0=D and for any i=1,...,kβˆ’1i=1,..., k-1 each vertex vv in Di+1D_{i+1} has at least t(v)t(v) neighbors in D0βˆͺ...βˆͺDiD_0\cup ...\cup D_i. Dynamic monopolies are in fact modeling the irreversible spread of influence such as disease or belief in social networks. We denote the smallest size of any dynamic monopoly of GG, with a given threshold assignment, by dyn(G)dyn(G). In this paper we first define the concept of a resistant subgraph and show its relationship with dynamic monopolies. Then we obtain some lower and upper bounds for the smallest size of dynamic monopolies in graphs with different types of thresholds. Next we introduce dynamo-unbounded families of graphs and prove some related results. We also define the concept of a homogenious society that is a graph with probabilistic thresholds satisfying some conditions and obtain a bound for the smallest size of its dynamos. Finally we consider dynamic monopoly of line graphs and obtain some bounds for their sizes and determine the exact values in some special cases

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and XβŠ†VX\subseteq V, if Ξ΄X(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set MβŠ†VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if Ξ΄M(v)β‰₯Ξ΄V(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:Vβ†’{βˆ’1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=βˆ‘v∈N(v)f(v)β‰₯tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set SβŠ†VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if Ξ΄S(v)β‰₯Ξ΄Vβˆ’S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016

    On irreversible spread of influence in edge-weighted graphs

    Get PDF
    Various kinds of spread of influence occur in real world social and virtual networks. These phenomena are formulated by activation processes and irreversible dynamic monopolies in combinatorial graphs representing the topology of the networks. In most cases, the nature of influence is weighted and the spread of influence depends on the weight of edges. The ordinary formulation and results for dynamic monopolies do not work for such models. In this paper we present a graph theoretical analysis for spread of weighted influence and mention a real world example realizing the activation model with weighted influence. Then we obtain some extremal bounds and algorithmic results for activation process and dynamic monopolies in directed and undirected graphs with weighted edges
    • …
    corecore