2,539 research outputs found

    Exploiting c\mathbf{c}-Closure in Kernelization Algorithms for Graph Problems

    Full text link
    A graph is c-closed if every pair of vertices with at least c common neighbors is adjacent. The c-closure of a graph G is the smallest number such that G is c-closed. Fox et al. [ICALP '18] defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can be applied in kernelization algorithms for several classic graph problems. We show that Dominating Set admits a kernel of size k^O(c), that Induced Matching admits a kernel with O(c^7*k^8) vertices, and that Irredundant Set admits a kernel with O(c^(5/2)*k^3) vertices. Our kernelization exploits the fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show

    On the approximability of the maximum induced matching problem

    Get PDF
    In this paper we consider the approximability of the maximum induced matching problem (MIM). We give an approximation algorithm with asymptotic performance ratio <i>d</i>-1 for MIM in <i>d</i>-regular graphs, for each <i>d</i>≥3. We also prove that MIM is APX-complete in <i>d</i>-regular graphs, for each <i>d</i>≥3

    On Solving Travelling Salesman Problem with Vertex Requisitions

    Full text link
    We consider the Travelling Salesman Problem with Vertex Requisitions, where for each position of the tour at most two possible vertices are given. It is known that the problem is strongly NP-hard. The proposed algorithm for this problem has less time complexity compared to the previously known one. In particular, almost all feasible instances of the problem are solvable in O(n) time using the new algorithm, where n is the number of vertices. The developed approach also helps in fast enumeration of a neighborhood in the local search and yields an integer programming model with O(n) binary variables for the problem.Comment: To appear in Yugoslav Journal of Operations Researc

    Hardness and Algorithms for Rainbow Connectivity

    Get PDF
    An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cellular networks. In this paper we give the first proof that computing rc(G) is NP-Hard. In fact, we prove that it is already NP-Complete to decide if rc(G) = 2, and also that it is NP-Complete to decide whether a given edge-colored (with an unbounded number of colors) graph is rainbow connected. On the positive side, we prove that for every ϵ\epsilon > 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connectivity, where the bound depends only on ϵ\epsilon, and the corresponding coloring can be constructed in polynomial time. Additional non-trivial upper bounds, as well as open problems and conjectures are also pre sented
    corecore