1,483 research outputs found

    Small-area estimation with spatial similarity

    Get PDF
    A class of composite estimators of small area quantities that exploit spatial (distancerelated) similarity is derived. It is based on a distribution-free model for the areas, but the estimators are aimed to have optimal design-based properties. Composition is applied also to estimate some of the global parameters on which the small area estimators depend. It is shown that the commonly adopted assumption of random effects is not necessary for exploiting the similarity of the districts (borrowing strength across the districts). The methods are applied in the estimation of the mean household sizes and the proportions of single-member households in the counties (comarcas) of Catalonia. The simplest version of the estimators is more efficient than the established alternatives, even though the extent of spatial similarity is quite modest.Auxiliary information, composite estimation, design-based estimator, exploiting similarity, model-based estimator, multivariate shrinkage, small-area estimation, spatial similarity

    Small area estimation on poverty indicators

    Get PDF
    We propose to estimate non-linear small area population quantities by using Empirical Best (EB) estimators based on a nested error model. EB estimators are obtained by Monte Carlo approximation. We focus on poverty indicators as particular non-linear quantities of interest, but the proposed methodology is applicable to general non-linear quantities. Small sample properties of EB estimators are analyzed by model-based and design-based simulation studies. Results show large reductions in mean squared error relative to direct estimators and estimators obtained by simulated censuses. An application is also given to estimate poverty incidences and poverty gaps in Spanish provinces by sex with mean squared errors estimated by parametric bootstrap. In the Spanish data, results show a significant reduction in coefficient of variation of the proposed EB estimators over direct estimators for most domains.Empirical best estimator, Parametric bootstrap, Poverty mapping, Small area estimation

    New important developments in small area estimation

    No full text
    The purpose of this paper is to review and discuss some of the new important developments in small area estimation (SAE) methods. Rao (2003) wrote a very comprehensive book, which covers all the main developments in this topic until that time and so the focus of this review is on new developments in the last 7 years. However, to make the review more self contained, I also repeat shortly some of the older developments. The review covers both design based and model-dependent methods with emphasis on the prediction of the area target quantities and the assessment of the prediction error. The style of the paper is similar to the style of my previous review on SAE published in 2002, explaining the new problems investigated and describing the proposed solutions, but without dwelling on theoretical details, which can be found in the original articles. I am hoping that this paper will be useful both to researchers who like to learn more on the research carried out in SAE and to practitioners who might be interested in the application of the new methods

    On the performance of small-area estimators: Fixed vs. random area parameters

    Get PDF
    Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.Small area estimation, composite estimator, Monte Carlo study, random effect model, BLUP, empirical BLUP

    Semi-Parametric Empirical Best Prediction for small area estimation of unemployment indicators

    Full text link
    The Italian National Institute for Statistics regularly provides estimates of unemployment indicators using data from the Labor Force Survey. However, direct estimates of unemployment incidence cannot be released for Local Labor Market Areas. These are unplanned domains defined as clusters of municipalities; many are out-of-sample areas and the majority is characterized by a small sample size, which render direct estimates inadequate. The Empirical Best Predictor represents an appropriate, model-based, alternative. However, for non-Gaussian responses, its computation and the computation of the analytic approximation to its Mean Squared Error require the solution of (possibly) multiple integrals that, generally, have not a closed form. To solve the issue, Monte Carlo methods and parametric bootstrap are common choices, even though the computational burden is a non trivial task. In this paper, we propose a Semi-Parametric Empirical Best Predictor for a (possibly) non-linear mixed effect model by leaving the distribution of the area-specific random effects unspecified and estimating it from the observed data. This approach is known to lead to a discrete mixing distribution which helps avoid unverifiable parametric assumptions and heavy integral approximations. We also derive a second-order, bias-corrected, analytic approximation to the corresponding Mean Squared Error. Finite sample properties of the proposed approach are tested via a large scale simulation study. Furthermore, the proposal is applied to unit-level data from the 2012 Italian Labor Force Survey to estimate unemployment incidence for 611 Local Labor Market Areas using auxiliary information from administrative registers and the 2011 Census

    Robust Henderson III estimators of variance components in the nested error model

    Get PDF
    Common methods for estimating variance components in Linear Mixed Models include Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML). These methods are based on the strong assumption of multivariate normal distribution and it is well know that they are very sensitive to outlying observations with respect to any of the random components. Several robust altematives of these methods have been proposed (e.g. Fellner 1986, Richardson and Welsh 1995). In this work we present several robust alternatives based on the Henderson method III which do not rely on the normality assumption and provide explicit solutions for the variance components estimators. These estimators can later be used to derive robust estimators of regression coefficients. Finally, we describe an application of this procedure to small area estimation, in which the main target is the estimation of the means of areas or domains when the within-area sample sizes are small.Henderson method III, Linear mixed model, Robust estimators, Variance component estimators

    Calibrated Weighting for Small Area Estimation

    No full text
    Calibrated weighting methods for estimation of survey population characteristics are widely used. At the same time, model-based prediction methods for estimation of small area or domain characteristics are becoming increasingly popular. This paper explores weighting methods based on the mixed models that underpin small area estimates to see whether they can deliver equivalent small area estimation performance when compared with standard prediction methods and superior population level estimation performance when compared with standard calibrated weighting methods. A simple MSE estimator for weighted small area estimation is also developed

    Bayesian Model Averaging and Weighted Average Least Squares: Equivariance, Stability, and Numerical Issues

    Get PDF
    This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squares (WALS) estimator developed by Magnus et al. (2010). Unlike standard pretest estimators which are based on some preliminary diagnostic test, these model averaging estimators provide a coherent way of making inference on the regression parameters of interest by taking into account the uncertainty due to both the estimation and the model selection steps. Special emphasis is given to a number practical issues that users are likely to face in applied work: equivariance to certain transformations of the explanatory variables, stability, accuracy, computing speed and out-of-memory problems. Performances of our bma and wals commands are illustrated using simulated data and empirical applications from the literature on model averaging estimation.Model uncertainty;Model averaging;Bayesian analysis;Exact computation
    • …
    corecore