467 research outputs found

    Almost product manifolds as the low energy geometry of Dirichlet branes

    Full text link
    Any candidate theory of quantum gravity must address the breakdown of the classical smooth manifold picture of space-time at distances comparable to the Planck length. String theory, in contrast, is formulated on conventional space-time. However, we show that in the low energy limit, the dynamics of generally curved Dirichlet p-branes possess an extended local isometry group, which can be absorbed into the brane geometry as an almost product structure. The induced kinematics encode two invariant scales, namely a minimal length and a maximal speed, without breaking general covariance. Quantum gravity effects on D-branes at low energy are then seen to manifest themselves by the kinematical effects of a maximal acceleration. Experimental and theoretical implications of such new kinematics are easily derived. We comment on consequences for brane world phenomenology.Comment: 12 pages, invited article in European Physical Journal C, reprinted in Proceedings of the International School on Subnuclear Physics 2003 Erice (World Scientific

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice

    On the Design of Region-Avoiding Metrics for Collision-Safe Motion Generation on Riemannian Manifolds

    Full text link
    The generation of energy-efficient and dynamic-aware robot motions that satisfy constraints such as joint limits, self-collisions, and collisions with the environment remains a challenge. In this context, Riemannian geometry offers promising solutions by identifying robot motions with geodesics on the so-called configuration space manifold. While this manifold naturally considers the intrinsic robot dynamics, constraints such as joint limits, self-collisions, and collisions with the environment remain overlooked. In this paper, we propose a modification of the Riemannian metric of the configuration space manifold allowing for the generation of robot motions as geodesics that efficiently avoid given regions. We introduce a class of Riemannian metrics based on barrier functions that guarantee strict region avoidance by systematically generating accelerations away from no-go regions in joint and task space. We evaluate the proposed Riemannian metric to generate energy-efficient, dynamic-aware, and collision-free motions of a humanoid robot as geodesics and sequences thereof.Comment: Accepted for publication in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) 2023. 8 pages, 7 figures, accompanying video at https://youtu.be/qT43XgYOlU

    A global approach to the refinement of manifold data

    Full text link
    A refinement of manifold data is a computational process, which produces a denser set of discrete data from a given one. Such refinements are closely related to multiresolution representations of manifold data by pyramid transforms, and approximation of manifold-valued functions by repeated refinements schemes. Most refinement methods compute each refined element separately, independently of the computations of the other elements. Here we propose a global method which computes all the refined elements simultaneously, using geodesic averages. We analyse repeated refinements schemes based on this global approach, and derive conditions guaranteeing strong convergence.Comment: arXiv admin note: text overlap with arXiv:1407.836

    On the Generation of Smooth Three-Dimensional Rigid Body Motions

    Get PDF
    This paper addresses the problem of generating smooth trajectories between an initial and final position and orientation in space. The main idea is to define a functional depending on velocity or its derivatives that measures the smoothness of a trajectory and find trajectories that minimize this functional. In order to ensure that the computed trajectories are independent of the parameterization of positions and orientations, we use the notions of Riemannian metric and covariant derivatives from differential geometry and formulate the problem as a variational problem on the Lie group of spatial rigid body displacements, SE (3). We show that by choosing an appropriate measure of smoothness, the trajectories can be made to satisfy boundary conditions on the velocities or higher order derivatives. Dynamically smooth trajectories can be obtained by incorporating the inertia of the system into the definition of the Riemannian metric. We state the necessary conditions for the shortest distance, minimum acceleration and minimum jerk trajectories. Analytical expressions for the smooth trajectories are derived for some special cases. We also provide several examples of the general case where the trajectories are computed numerically
    corecore