149 research outputs found

    Feedback Numbers of Möbius Ladders

    Get PDF
    A subset F ⊂ V(G) is called a feedback vertex set if the subgraph G−F is acyclic. The minimum cardinality of a feedback vertex set is called the feedback number of G, which is proposed by Beineke and Vandell [1]. In this paper, we consider a particular topology graph called Möbius ladders M2n. We use f(M2n) to denote the feedback number of M2n. This paper proves that f (M2n) = [n+1/2], n≄3

    On the design of architecture-aware algorithms for emerging applications

    Get PDF
    This dissertation maps various kernels and applications to a spectrum of programming models and architectures and also presents architecture-aware algorithms for different systems. The kernels and applications discussed in this dissertation have widely varying computational characteristics. For example, we consider both dense numerical computations and sparse graph algorithms. This dissertation also covers emerging applications from image processing, complex network analysis, and computational biology. We map these problems to diverse multicore processors and manycore accelerators. We also use new programming models (such as Transactional Memory, MapReduce, and Intel TBB) to address the performance and productivity challenges in the problems. Our experiences highlight the importance of mapping applications to appropriate programming models and architectures. We also find several limitations of current system software and architectures and directions to improve those. The discussion focuses on system software and architectural support for nested irregular parallelism, Transactional Memory, and hybrid data transfer mechanisms. We believe that the complexity of parallel programming can be significantly reduced via collaborative efforts among researchers and practitioners from different domains. This dissertation participates in the efforts by providing benchmarks and suggestions to improve system software and architectures.Ph.D.Committee Chair: Bader, David; Committee Member: Hong, Bo; Committee Member: Riley, George; Committee Member: Vuduc, Richard; Committee Member: Wills, Scot

    Master index: volumes 31–40

    Get PDF

    FatPaths: Routing in Supercomputers and Data Centers when Shortest Paths Fall Short

    Full text link
    We introduce FatPaths: a simple, generic, and robust routing architecture that enables state-of-the-art low-diameter topologies such as Slim Fly to achieve unprecedented performance. FatPaths targets Ethernet stacks in both HPC supercomputers as well as cloud data centers and clusters. FatPaths exposes and exploits the rich ("fat") diversity of both minimal and non-minimal paths for high-performance multi-pathing. Moreover, FatPaths uses a redesigned "purified" transport layer that removes virtually all TCP performance issues (e.g., the slow start), and incorporates flowlet switching, a technique used to prevent packet reordering in TCP networks, to enable very simple and effective load balancing. Our design enables recent low-diameter topologies to outperform powerful Clos designs, achieving 15% higher net throughput at 2x lower latency for comparable cost. FatPaths will significantly accelerate Ethernet clusters that form more than 50% of the Top500 list and it may become a standard routing scheme for modern topologies

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. SpeciïŹcally, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    Efficient structural outlooks for vertex product networks

    Get PDF
    In this thesis, a new classification for a large set of interconnection networks, referred to as "Vertex Product Networks" (VPN), is provided and a number of related issues are discussed including the design and evaluation of efficient structural outlooks for algorithm development on this class of networks. The importance of studying the VPN can be attributed to the following two main reasons: first an unlimited number of new networks can be defined under the umbrella of the VPN, and second some known networks can be studied and analysed more deeply. Examples of the VPN include the newly proposed arrangement-star and the existing Optical Transpose Interconnection Systems (OTIS-networks). Over the past two decades many interconnection networks have been proposed in the literature, including the star, hyperstar, hypercube, arrangement, and OTIS-networks. Most existing research on these networks has focused on analysing their topological properties. Consequently, there has been relatively little work devoted to designing efficient parallel algorithms for important parallel applications. In an attempt to fill this gap, this research aims to propose efficient structural outlooks for algorithm development. These structural outlooks are based on grid and pipeline views as popular structures that support a vast body of applications that are encountered in many areas of science and engineering, including matrix computation, divide-and- conquer type of algorithms, sorting, and Fourier transforms. The proposed structural outlooks are applied to the VPN, notably the arrangement-star and OTIS-networks. In this research, we argue that the proposed arrangement-star is a viable candidate as an underlying topology for future high-speed parallel computers. Not only does the arrangement-star bring a solution to the scalability limitations from which the Abstract existing star graph suffers, but it also enables the development of parallel algorithms based on the proposed structural outlooks, such as matrix computation, linear algebra, divide-and-conquer algorithms, sorting, and Fourier transforms. Results from a performance study conducted in this thesis reveal that the proposed arrangement-star supports efficiently applications based on the grid or pipeline structural outlooks. OTIS-networks are another example of the VPN. This type of networks has the important advantage of combining both optical and electronic interconnect technology. A number of studies have recently explored the topological properties of OTIS-networks. Although there has been some work on designing parallel algorithms for image processing and sorting, hardly any work has considered the suitability of these networks for an important class of scientific problems such as matrix computation, sorting, and Fourier transforms. In this study, we present and evaluate two structural outlooks for algorithm development on OTIS-networks. The proposed structural outlooks are general in the sense that no specific factor network or problem domain is assumed. Timing models for measuring the performance of the proposed structural outlooks are provided. Through these models, the performance of various algorithms on OTIS-networks are evaluated and compared with their counterparts on conventional electronic interconnection systems. The obtained results reveal that OTIS-networks are an attractive candidate for future parallel computers due to their superior performance characteristics over networks using traditional electronic interconnects
    • 

    corecore