7 research outputs found

    Estimation Techniques and Mitigation Tools for Ionospheric effects on GNSS Receivers

    Get PDF
    Navigation is defined as the science of getting a craft or person from one place to another. The development of radio in the past century brought fort new navigation aids that enabled users, or rather their receivers, to compute their position with the help of signals from one or more radio-navigation system . The U.S. Global Positioning System (GPS) was envisioned as a satellite system for three-dimensional position and velocity determination fulfilling the following key attributes: global coverage, continuous/all weather operation, ability to serve high-dynamic platforms, and high accuracy. It represents the fruition of several technologies, which matured and came together in the second half of the 20th century. In particular, stable space-born platforms, ultra-stable atomic frequency standards, spread spectrum signaling, and microelectronics are the key developments in the realization and success of GPS. While GPS was under development, the Soviet Union undertook to develop a similar system called GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS). Both GLONASS and GPS were designed primarily for the military, but have transitioned in the past decades towards providing civilian and Safety-of-Life services as well. Other Global Navigation Satellite Systems (GNSS) are now being developed and deployed by governments, international consortia, and commercial interests. Among these are the European system Galileo and the Chinese system Beidou. Other regional systems are the Japanese Quasi-Zenith Satellite System and the Indian Gagan. GNSS have become a crucial component in countless modern systems, e.g. in telecommunication, navigation, remote sensing, precise agriculture, aviation and timing. One of the main threats to the reliable and safe operation of GNSS are the variable propagation conditions encountered by GNSS signals as they pass through the upper atmosphere of the Earth. In particular, irregular concentration of electrons in the ionosphere induce fast fluctuations in the amplitude and phase of GNSS signals called scintillations. The latter can greatly degrade the performance of GNSS receivers, with consequent economical impacts on service providers and users of high performance applications. New GNSS navigation signals and codes are expected to help mitigate such effects, although to what degree is still unknown. Furthermore, these new technologies will only come on line incrementally over the next decade as new GNSS satellites become operational. In the meantime, GPS users who need high performance navigation solution, e.g., offshore drilling companies, might be forced to postpone operations for which precision position knowledge is required until the ionospheric disturbances are over. For this reason continuous monitoring of scintillations has become a priority in order to try to predict its occurrence. Indeed, it is a growing scientific and industrial activity. However, Radio Frequency (RF) Interference from other telecommunication systems might threaten the monitoring of scintillation activity. Currently, the majority of the GNSS based application are highly exposed to unintentional or intentional interference issues. The extremely weak power of the GNSS signals, which is actually completely buried in the noise floor at the user receiver antenna level, puts interference among the external error contributions that most degrade GNSS performance. It is then of interest to study the effects these external systems may have on the estimation of ionosphere activity with GNSS. In this dissertation, we investigate the effect of propagation issues in GNSS, focusing on scintillations, interference and the joint effect of the two phenomena

    Contributions to radio frequency interference detection and mitigation in Earth observation

    Get PDF
    Radio Frequency Interference (RFI) is the most common problem for electronic measuring systems. The presence of those electromagnetic waves can harm the measurements taken from very sensitive instruments, like microwave radiometry or navigation systems. The accuracy and precision are compromised. A first step to mitigate those unwanted effects is to study the RFI properties. Different algorithms have been proposed to detect the interferences, but there is no method that works in all cases. The scope of this dissertation is the design, implementation and testing of different detection and mitigation methods in real-time. Performed surveys and characterization of RFI sources provide a great contribution to optimize the current mitigation techniques. In the mitigation area, two real-time hardware systems have been implemented: a wavelet denoise system to model the RFI and mitigate it, and a circuit to allow a navigation system to continue operational under the effects of a jammer.El problema més comú en els sistemes electrònics de mesura són les interferències electromagnètiques. La presència d'aquests senyals pot danyar les mesures preses per instruments molt sensibles, com radiòmetres de microones o sistemes de navegació. L'exactitud i precisió es veuen compromeses. El primer pas per mitigar aquests efectes no desitjats és estudiar les propietats de les interferències electromagnètiques. Diversos algoritmes han estat proposats per detectar interferències, però no hi ha mètode que funcioni bé en tots els casos . Aquest treball comprèn el disseny, implementació i comprovació de diferents mètodes de detecció i mitigació en temps real. Els estudis i caracterització de les fonts d'interferències són una gran contribució per a optimitzar les tècniques de mitigació actuals. En el tema de mitigació, dos sistemes en temps real han estat implementats en hardware: un sistema que utilitza wavelets per modelar la interferència i mitigar-la, i un circuit que permet a un sistema de navegació continuar funcionant sota els efectes d'un interferidor comercial ( jammer )

    A scalable real-time processing chain for radar exploiting illuminators of opportunity

    Get PDF
    Includes bibliographical references.This thesis details the design of a processing chain and system software for a commensal radar system, that is, a radar that makes use of illuminators of opportunity to provide the transmitted waveform. The stages of data acquisition from receiver back-end, direct path interference and clutter suppression, range/Doppler processing and target detection are described and targeted to general purpose commercial off-the-shelf computing hardware. A detailed low level design of such a processing chain for commensal radar which includes both processing stages and processing stage interactions has, to date, not been presented in the Literature. Furthermore, a novel deployment configuration for a networked multi-site FM broadcast band commensal radar system is presented in which the reference and surveillance channels are record at separate locations

    Three Dimensional Bistatic Tomography Using HDTV

    Get PDF
    The thesis begins with a review of the principles of diffraction and reflection tomography; starting with the analytic solution to the inhomogeneous Helmholtz equation, after linearization by the Born approximation (the weak scatterer solution), and arriving at the Filtered Back Projection (Propagation) method of reconstruction. This is followed by a heuristic derivation more directly couched in the radar imaging context, without the rigor of the general inverse problem solution and more closely resembling an imaging turntable or inverse synthetic aperture radar. The heuristic derivation leads into the concept of the line integral and projections (the Radon Transform), followed by more general geometries where the plane wave approximation is invalid. We proceed next to study of the dependency of reconstruction on the space-frequency trajectory, combining the spatial aperture and waveform. Two and three dimensional apertures, monostatic and bistatic, fully and sparsely sampled and including partial apertures, with controlled waveforms (CW and pulsed, with and without modulation) define the filling of k-space and concomitant reconstruction performance. Theoretical developments in the first half of the thesis are applied to the specific example of bistatic tomographic imaging using High Definition Television (HDTV); the United States version of DVB-T. Modeling of the HDTV waveform using pseudonoise modulation to represent the hybrid 8VSB HDTV scheme and the move-stop-move approximation established the imaging potential, employing an idealized, isotropic 18 scatterer. As the move-stop-move approximation places a limitation on integration time (in cross correlation/pulse compression) due to transmitter/receiver motion, an exact solution for compensation of Doppler distortion is derived. The concept is tested with the assembly and flight test of a bistatic radar system employing software-defined radios (SDR). A three dimensional, bistatic collection aperture, exploiting an elevated commercial HDTV transmitter, is focused to demonstrate the principle. This work, to the best of our knowledge, represents a first in the formation of three dimensional images using bistatically-exploited television transmitters
    corecore