187 research outputs found

    Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity

    Get PDF
    The relationship between the Bayesian approach and the minimum description length approach is established. We sharpen and clarify the general modeling principles MDL and MML, abstracted as the ideal MDL principle and defined from Bayes's rule by means of Kolmogorov complexity. The basic condition under which the ideal principle should be applied is encapsulated as the Fundamental Inequality, which in broad terms states that the principle is valid when the data are random, relative to every contemplated hypothesis and also these hypotheses are random relative to the (universal) prior. Basically, the ideal principle states that the prior probability associated with the hypothesis should be given by the algorithmic universal probability, and the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized. If we restrict the model class to the finite sets then application of the ideal principle turns into Kolmogorov's minimal sufficient statistic. In general we show that data compression is almost always the best strategy, both in hypothesis identification and prediction.Comment: 35 pages, Latex. Submitted IEEE Trans. Inform. Theor

    Applying MDL to Learning Best Model Granularity

    Get PDF
    The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic matching, using multiple prototypes per character, the optimal prediction rate is predicted for the learned parameter (length of sampling interval) considered most likely by MDL, which is shown to coincide with the best value found experimentally. In the second experiment the task is to model a robot arm with two degrees of freedom using a three layer feed-forward neural network where we need to determine the number of nodes in the hidden layer giving best modeling performance. The optimal model (the one that extrapolizes best on unseen examples) is predicted for the number of nodes in the hidden layer considered most likely by MDL, which again is found to coincide with the best value found experimentally.Comment: LaTeX, 32 pages, 5 figures. Artificial Intelligence journal, To appea

    A Philosophical Treatise of Universal Induction

    Get PDF
    Understanding inductive reasoning is a problem that has engaged mankind for thousands of years. This problem is relevant to a wide range of fields and is integral to the philosophy of science. It has been tackled by many great minds ranging from philosophers to scientists to mathematicians, and more recently computer scientists. In this article we argue the case for Solomonoff Induction, a formal inductive framework which combines algorithmic information theory with the Bayesian framework. Although it achieves excellent theoretical results and is based on solid philosophical foundations, the requisite technical knowledge necessary for understanding this framework has caused it to remain largely unknown and unappreciated in the wider scientific community. The main contribution of this article is to convey Solomonoff induction and its related concepts in a generally accessible form with the aim of bridging this current technical gap. In the process we examine the major historical contributions that have led to the formulation of Solomonoff Induction as well as criticisms of Solomonoff and induction in general. In particular we examine how Solomonoff induction addresses many issues that have plagued other inductive systems, such as the black ravens paradox and the confirmation problem, and compare this approach with other recent approaches.Comment: 72 pages, 2 figures, 1 table, LaTe

    Application of Kolmogorov complexity and universal codes to identity testing and nonparametric testing of serial independence for time series

    Get PDF
    We show that Kolmogorov complexity and such its estimators as universal codes (or data compression methods) can be applied for hypotheses testing in a framework of classical mathematical statistics. The methods for identity testing and nonparametric testing of serial independence for time series are suggested.Comment: submitte

    A Stochastic Complexity Perspective of Induction in Economics and Inference in Dynamics

    Get PDF
    Rissanen's fertile and pioneering minimum description length principle (MDL) has been viewed from the point of view of statistical estimation theory, information theory, as stochastic complexity theory -.i.e., a computable approximation to Kolomogorov Complexity - or Solomonoff's recursion theoretic induction principle or as analogous to Kolmogorov's sufficient statistics. All these - and many more - interpretations are valid, interesting and fertile. In this paper I view it from two points of view: those of an algorithmic economist and a dynamical system theorist. >From these points of view I suggest, first, a recasting of Jevons's sceptical vision of induction in the light of MDL; and a complexity interpretation of an undecidable question in dynamics.

    Strong Asymptotic Assertions for Discrete MDL in Regression and Classification

    Full text link
    We study the properties of the MDL (or maximum penalized complexity) estimator for Regression and Classification, where the underlying model class is countable. We show in particular a finite bound on the Hellinger losses under the only assumption that there is a "true" model contained in the class. This implies almost sure convergence of the predictive distribution to the true one at a fast rate. It corresponds to Solomonoff's central theorem of universal induction, however with a bound that is exponentially larger.Comment: 6 two-column page

    m-sophistication

    Get PDF
    The m-sophistication of a finite binary string x is introduced as a generalization of some parameter in the proof that complexity of complexity is rare. A probabilistic near sufficient statistic of x is given which length is upper bounded by the m-sophistication of x within small additive terms. This shows that m-sophistication is lower bounded by coarse sophistication and upper bounded by sophistication within small additive terms. It is also shown that m-sophistication and coarse sophistication can not be approximated by an upper or lower semicomputable function, not even within very large error.Comment: 13 pages, draf
    • …
    corecore