31,151 research outputs found

    Minimum cycle and homology bases of surface embedded graphs

    Get PDF
    We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 11-dimensional (Z2\mathbb{Z}_2)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 11-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)O(n^\omega+2^{2g}n^2+m)-time algorithm for graphs embedded on an orientable surface of genus gg. The best known existing algorithms for surface embedded graphs are those for general graphs: an O(mω)O(m^\omega) time Monte Carlo algorithm and a deterministic O(nm2/logn+n2m)O(nm^2/\log n + n^2 m) time algorithm. For the minimum homology basis problem, we give a deterministic O((g+b)3nlogn+m)O((g+b)^3 n \log n + m)-time algorithm for graphs embedded on an orientable or non-orientable surface of genus gg with bb boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of gg and nn. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of O(logn)O(\log n).Comment: A preliminary version of this work was presented at the 32nd Annual International Symposium on Computational Geometr

    Convex Cycle Bases

    Get PDF
    Convex cycles play a role e.g. in the context of product graphs. We introduce convex cycle bases and describe a polynomial-time algorithm that recognizes whether a given graph has a convex cycle basis and provides an explicit construction in the positive case. Relations between convex cycles bases and other types of cycles bases are discussed. In particular we show that if G has a unique minimal cycle bases, this basis is convex. Furthermore, we characterize a class of graphs with convex cycles bases that includes partial cubes and hence median graphs. (authors' abstract)Series: Research Report Series / Department of Statistics and Mathematic

    SAT Modulo Monotonic Theories

    Full text link
    We define the concept of a monotonic theory and show how to build efficient SMT (SAT Modulo Theory) solvers, including effective theory propagation and clause learning, for such theories. We present examples showing that monotonic theories arise from many common problems, e.g., graph properties such as reachability, shortest paths, connected components, minimum spanning tree, and max-flow/min-cut, and then demonstrate our framework by building SMT solvers for each of these theories. We apply these solvers to procedural content generation problems, demonstrating major speed-ups over state-of-the-art approaches based on SAT or Answer Set Programming, and easily solving several instances that were previously impractical to solve

    Minimum Cycle Basis and All-Pairs Min Cut of a Planar Graph in Subquadratic Time

    Full text link
    A minimum cycle basis of a weighted undirected graph GG is a basis of the cycle space of GG such that the total weight of the cycles in this basis is minimized. If GG is a planar graph with non-negative edge weights, such a basis can be found in O(n2)O(n^2) time and space, where nn is the size of GG. We show that this is optimal if an explicit representation of the basis is required. We then present an O(n3/2logn)O(n^{3/2}\log n) time and O(n3/2)O(n^{3/2}) space algorithm that computes a minimum cycle basis \emph{implicitly}. From this result, we obtain an output-sensitive algorithm that explicitly computes a minimum cycle basis in O(n3/2logn+C)O(n^{3/2}\log n + C) time and O(n3/2+C)O(n^{3/2} + C) space, where CC is the total size (number of edges and vertices) of the cycles in the basis. These bounds reduce to O(n3/2logn)O(n^{3/2}\log n) and O(n3/2)O(n^{3/2}), respectively, when GG is unweighted. We get similar results for the all-pairs min cut problem since it is dual equivalent to the minimum cycle basis problem for planar graphs. We also obtain O(n3/2logn)O(n^{3/2}\log n) time and O(n3/2)O(n^{3/2}) space algorithms for finding, respectively, the weight vector and a Gomory-Hu tree of GG. The previous best time and space bound for these two problems was quadratic. From our Gomory-Hu tree algorithm, we obtain the following result: with O(n3/2logn)O(n^{3/2}\log n) time and O(n3/2)O(n^{3/2}) space for preprocessing, the weight of a min cut between any two given vertices of GG can be reported in constant time. Previously, such an oracle required quadratic time and space for preprocessing. The oracle can also be extended to report the actual cut in time proportional to its size

    On Minimum Average Stretch Spanning Trees in Polygonal 2-trees

    Full text link
    A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. We consider the problem of computing a minimum average stretch spanning tree in polygonal 2-trees, a super class of 2-connected outerplanar graphs. For a polygonal 2-tree on nn vertices, we present an algorithm to compute a minimum average stretch spanning tree in O(nlogn)O(n \log n) time. This algorithm also finds a minimum fundamental cycle basis in polygonal 2-trees.Comment: 17 pages, 12 figure
    corecore