74 research outputs found

    A constrained Potts antiferromagnet model with an interface representation

    Full text link
    We define a four-state Potts model ensemble on the square lattice, with the constraints that neighboring spins must have different values, and that no plaquette may contain all four states. The spin configurations may be mapped into those of a 2-dimensional interface in a 2+5 dimensional space. If this interface is in a Gaussian rough phase (as is the case for most other models with such a mapping), then the spin correlations are critical and their exponents can be related to the stiffness governing the interface fluctuations. Results of our Monte Carlo simulations show height fluctuations with an anomalous dependence on wavevector, intermediate between the behaviors expected in a rough phase and in a smooth phase; we argue that the smooth phase (which would imply long-range spin order) is the best interpretation.Comment: 61 pages, LaTeX. Submitted to J. Phys.

    Antisquares and Critical Exponents

    Full text link
    The complement xˉ\bar{x} of a binary word xx is obtained by changing each 00 in xx to 11 and vice versa. An antisquare is a nonempty word of the form xxˉx\, \bar{x}. In this paper, we study infinite binary words that do not contain arbitrarily large antisquares. For example, we show that the repetition threshold for the language of infinite binary words containing exactly two distinct antisquares is (5+5)/2(5+\sqrt{5})/2. We also study repetition thresholds for related classes, where "two" in the previous sentence is replaced by a large number. We say a binary word is good if the only antisquares it contains are 0101 and 1010. We characterize the minimal antisquares, that is, those words that are antisquares but all proper factors are good. We determine the the growth rate of the number of good words of length nn and determine the repetition threshold between polynomial and exponential growth for the number of good words

    Privileged Words and Sturmian Words

    Get PDF
    This dissertation has two almost unrelated themes: privileged words and Sturmian words. Privileged words are a new class of words introduced recently. A word is privileged if it is a complete first return to a shorter privileged word, the shortest privileged words being letters and the empty word. Here we give and prove almost all results on privileged words known to date. On the other hand, the study of Sturmian words is a well-established topic in combinatorics on words. In this dissertation, we focus on questions concerning repetitions in Sturmian words, reproving old results and giving new ones, and on establishing completely new research directions. The study of privileged words presented in this dissertation aims to derive their basic properties and to answer basic questions regarding them. We explore a connection between privileged words and palindromes and seek out answers to questions on context-freeness, computability, and enumeration. It turns out that the language of privileged words is not context-free, but privileged words are recognizable by a linear-time algorithm. A lower bound on the number of binary privileged words of given length is proven. The main interest, however, lies in the privileged complexity functions of the Thue-Morse word and Sturmian words. We derive recurrences for computing the privileged complexity function of the Thue-Morse word, and we prove that Sturmian words are characterized by their privileged complexity function. As a slightly separate topic, we give an overview of a certain method of automated theorem-proving and show how it can be applied to study privileged factors of automatic words. The second part of this dissertation is devoted to Sturmian words. We extensively exploit the interpretation of Sturmian words as irrational rotation words. The essential tools are continued fractions and elementary, but powerful, results of Diophantine approximation theory. With these tools at our disposal, we reprove old results on powers occurring in Sturmian words with emphasis on the fractional index of a Sturmian word. Further, we consider abelian powers and abelian repetitions and characterize the maximum exponents of abelian powers with given period occurring in a Sturmian word in terms of the continued fraction expansion of its slope. We define the notion of abelian critical exponent for Sturmian words and explore its connection to the Lagrange spectrum of irrational numbers. The results obtained are often specialized for the Fibonacci word; for instance, we show that the minimum abelian period of a factor of the Fibonacci word is a Fibonacci number. In addition, we propose a completely new research topic: the square root map. We prove that the square root map preserves the language of any Sturmian word. Moreover, we construct a family of non-Sturmian optimal squareful words whose language the square root map also preserves.This construction yields examples of aperiodic infinite words whose square roots are periodic.Siirretty Doriast

    Enumeration and Decidable Properties of Automatic Sequences

    Full text link
    We show that various aspects of k-automatic sequences -- such as having an unbordered factor of length n -- are both decidable and effectively enumerable. As a consequence it follows that many related sequences are either k-automatic or k-regular. These include many sequences previously studied in the literature, such as the recurrence function, the appearance function, and the repetitivity index. We also give some new characterizations of the class of k-regular sequences. Many results extend to other sequences defined in terms of Pisot numeration systems

    Episturmian words: a survey

    Get PDF
    In this paper, we survey the rich theory of infinite episturmian words which generalize to any finite alphabet, in a rather resembling way, the well-known family of Sturmian words on two letters. After recalling definitions and basic properties, we consider episturmian morphisms that allow for a deeper study of these words. Some properties of factors are described, including factor complexity, palindromes, fractional powers, frequencies, and return words. We also consider lexicographical properties of episturmian words, as well as their connection to the balance property, and related notions such as finite episturmian words, Arnoux-Rauzy sequences, and "episkew words" that generalize the skew words of Morse and Hedlund.Comment: 36 pages; major revision: improvements + new material + more reference

    Hunter-gatherers in a howling wilderness: Neoliberal capitalism as a language that speaks itself

    Get PDF
    The 'self-referential' character of evolutionary process noted by Goldenfeld and Woese (2010) can be restated in the context of a generalized Darwinian theory applied to economic process through a 'language' model: The underlying inherited and learned culture of the firm, the short-time cognitive response of the firm to patterns of threat and opportunity that is sculpted by that culture, and the embedding socioeconomic environment, are represented as interacting information sources constrained by the asymptotic limit theorems of information theory. If unregulated, the larger, compound, source that characterizes high probability evolutionary paths of this composite then becomes, literally, a self-dynamic language that speaks itself. Such a structure is, for those enmeshed in it, more akin to a primitive hunter-gatherer society at the mercy of internal ecological dynamics than to, say, a neolithic agricultural community in which a highly ordered, deliberately adapted, ecosystem is consciously farmed so as to match its productivity to human needs

    On Special k-Spectra, k-Locality, and Collapsing Prefix Normal Words

    Get PDF
    The domain of Combinatorics on Words, first introduced by Axel Thue in 1906, covers by now many subdomains. In this work we are investigating scattered factors as a representation of non-complete information and two measurements for words, namely the locality of a word and prefix normality, which have applications in pattern matching. In the first part of the thesis we investigate scattered factors: A word u is a scattered factor of w if u can be obtained from w by deleting some of its letters. That is, there exist the (potentially empty) words u1, u2, . . . , un, and v0,v1,...,vn such that u = u1u2 ̈ ̈ ̈un and w = v0u1v1u2v2 ̈ ̈ ̈unvn. First, we consider the set of length-k scattered factors of a given word w, called the k-spectrum of w and denoted by ScatFactk(w). We prove a series of properties of the sets ScatFactk(w) for binary weakly-0-balanced and, respectively, weakly-c-balanced words w, i.e., words over a two- letter alphabet where the number of occurrences of each letter is the same, or, respectively, one letter has c occurrences more than the other. In particular, we consider the question which cardinalities n = | ScatFactk (w)| are obtainable, for a positive integer k, when w is either a weakly-0- balanced binary word of length 2k, or a weakly-c-balanced binary word of length 2k ́ c. Second, we investigate k-spectra that contain all possible words of length k, i.e., k-spectra of so called k-universal words. We present an algorithm deciding whether the k-spectra for given k of two words are equal or not, running in optimal time. Moreover, we present several results regarding k-universal words and extend this notion to circular universality that helps in investigating how the universality of repetitions of a given word can be determined. We conclude the part about scattered factors with results on the reconstruction problem of words from scattered factors that asks for the minimal information, like multisets of scattered factors of a given length or the number of occurrences of scattered factors from a given set, necessary to uniquely determine a word. We show that a word w P {a, b} ̊ can be reconstructed from the number of occurrences of at most min(|w|a, |w|b) + 1 scattered factors of the form aib, where |w|a is the number of occurrences of the letter a in w. Moreover, we generalise the result to alphabets of the form {1, . . . , q} by showing that at most ∑q ́1 |w|i (q ́ i + 1) scattered factors suffices to reconstruct w. Both results i=1 improve on the upper bounds known so far. Complexity time bounds on reconstruction algorithms are also considered here. In the second part we consider patterns, i.e., words consisting of not only letters but also variables, and in particular their locality. A pattern is called k-local if on marking the pattern in a given order never more than k marked blocks occur. We start with the proof that determining the minimal k for a given pattern such that the pattern is k-local is NP- complete. Afterwards we present results on the behaviour of the locality of repetitions and palindromes. We end this part with the proof that the matching problem becomes also NP-hard if we do not consider a regular pattern - for which the matching problem is efficiently solvable - but repetitions of regular patterns. In the last part we investigate prefix normal words which are binary words in which each prefix has at least the same number of 1s as any factor of the same length. First introduced in 2011 by Fici and Lipták, the problem of determining the index (amount of equivalence classes for a given word length) of the prefix normal equivalence relation is still open. In this paper, we investigate two aspects of the problem, namely prefix normal palindromes and so-called collapsing words (extending the notion of critical words). We prove characterizations for both the palindromes and the collapsing words and show their connection. Based on this, we show that still open problems regarding prefix normal words can be split into certain subproblems
    corecore