193 research outputs found

    Optimal Algorithms for Near-Hitless Network Restoration via Diversity Coding

    Full text link
    Diversity coding is a network restoration technique which offers near-hitless restoration, while other state-of-the art techniques are significantly slower. Furthermore, the extra spare capacity requirement of diversity coding is competitive with the others. Previously, we developed heuristic algorithms to employ diversity coding structures in networks with arbitrary topology. This paper presents two algorithms to solve the network design problems using diversity coding in an optimal manner. The first technique pre-provisions static traffic whereas the second technique carries out the dynamic provisioning of the traffic on-demand. In both cases, diversity coding results in smaller restoration time, simpler synchronization, and much reduced signaling complexity than the existing techniques in the literature. A Mixed Integer Programming (MIP) formulation and an algorithm based on Integer Linear Programming (ILP) are developed for pre-provisioning and dynamic provisioning, respectively. Simulation results indicate that diversity coding has significantly higher restoration speed than Shared Path Protection (SPP) and p-cycle techniques. It requires more extra capacity than the p-cycle technique and SPP. However, the increase in the total capacity is negligible compared to the increase in the restoration speed.Comment: An old version of this paper is submitted to IEEE Globecom 2012 conferenc

    Diversity Coding-Based Survivable Routing with QoS and Differential Delay Bounds

    Get PDF
    Survivable routing with instantaneous recovery gained much attention in the last decade, as in optical backbone networks even the shortest disruption of a connection may cause tremendous loss of data. Recently, strict delay requirements emerges with the growing volume of multimedia and video streaming applications, which have to be ensured both before and after a failure. Diversity coding provides a nice trade-off between the simplicity of dedicated protection and bandwidth-efficiency of network coding to ensure instantaneous recovery for the connections. Hence, in this paper we thoroughly investigate the optimal structure of diversity coding-based survivable routing, which has a well-defined acyclic structure of subsequent paths and disjoint path-pairs between the communication end-points. We define the delay of these directed acyclic graphs, and investigate the effect of Qualityof- Service and differential delay bounds on the solution cost. Complexity analysis and integer linear programs are provided to solve these delay aware survivable routing problems. We discuss their approximability and provide some heuristic algorithms, too. Thorough experiments are conducted to demonstrate the benefits of diversity coding on randomly generated and real-world optical topologies

    TUNING OPTIMIZATION SOFTWARE PARAMETERS FOR MIXED INTEGER PROGRAMMING PROBLEMS

    Get PDF
    The tuning of optimization software is of key interest to researchers solving mixed integer programming (MIP) problems. The efficiency of the optimization software can be greatly impacted by the solver’s parameter settings and the structure of the MIP. A designed experiment approach is used to fit a statistical model that would suggest settings of the parameters that provided the largest reduction in the primal integral metric. Tuning exemplars of six and 59 factors (parameters) of optimization software, experimentation takes place on three classes of MIPs: survivable fixed telecommunication network design, a formulation of the support vector machine with the ramp loss and L1-norm regularization, and node packing for coding theory graphs. This research presents and demonstrates a framework for tuning a portfolio of MIP instances to not only obtain good parameter settings used for future instances of the same class of MIPs, but to also gain insights into which parameters and interactions of parameters are significant for that class of MIPs. The framework is used for benchmarking of solvers with tuned parameters on a portfolio of instances. A group screening method provides a way to reduce the number of factors in a design and reduces the time it takes to perform the tuning process. Portfolio benchmarking provides performance information of optimization solvers on a class with instances of a similar structure

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Topology overlays for dedicated protection Ethernet LAN services in advanced SONET/SDH networks

    Get PDF
    The explosion of information technology (IT) services coupled with much-increased personal and scientific computing capabilities has resulted in great demand for more scalable and reliable networking services. Along these lines, carriers have spent large sums to transition their legacy\u27 SONET/SDH voice-based networking infrastructures to better support client-side Ethernet data interfaces, i.e., next-generation SONET/SDH (NGS). In particular, a key addition here has been the new virtual concatenation (VCAT) feature which supports inverse multiplexing to \u27split\u27 larger connection requests in to a series of independently-routed \u27sub-connections\u27. As these improved infrastructures have been deployed, the design of new Ethernet over SONET/SDH (EoS) services has become a key focus area for carriers, i.e., including point-to-point and multi-point services. In light of the above, this thesis focuses on the study of improved multi-point EoS schemes in NGS networks, i.e., to provision robust \u27virtual LAN\u27 capabilities over metro and wide-area domains. Indeed, as services demands grow, survivability considerations are becoming a key concern. Along these lines, the proposed solution develops novel multi-tiered (partial) protection strategies. Specifically, graph-theoretic algorithms are first proposed to interconnect multi-point node groups using bus and minimum spanning tree (MST) overlays. Next, advanced multi-path routing schemes are used to provision and protect these individual overlay connections using the inverse-multiplexing capabilities of NGS. Finally, post-fault restoration features are also added to handle expanded failure conditions, e.g., multiple failures. The performances of the proposed multi-point EoS algorithms developed in this research are gauged using advanced software-based simulation in the OPNET ModelerTM environment. The findings indicate that both the bus and MST overlays give very good performance in terms of request blocking and carried load. However, the MST-based overlays slightly outperform the bus-based overlays as they allow more efficient topology designs. In addition, the incorporation of dynamic load state information in the selection of bus and/or MST overlays is also very beneficial as opposed to just using static hop count state. Furthermore, inverse-multiplexing is highly-effective, yielding notably higher carried loads when coupled with load-balancing sub-connection routing. Finally, results also show that post-fault restoration is also a very effective means of boosting EoS LAN throughputs for partially-protected demands, consistently matching the reliability of full-protection setups.\u2
    • …
    corecore