6,700 research outputs found

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    Improving the automatic segmentation of subtitles through conditional random field

    Full text link
    [EN] Automatic segmentation of subtitles is a novel research field which has not been studied extensively to date. However, quality automatic subtitling is a real need for broadcasters which seek for automatic solutions given the demanding European audiovisual legislation. In this article, a method based on Conditional Random Field is presented to deal with the automatic subtitling segmentation. This is a continuation of a previous work in the field, which proposed a method based on Support Vector Machine classifier to generate possible candidates for breaks. For this study, two corpora in Basque and Spanish were used for experiments, and the performance of the current method was tested and compared with the previous solution and two rule-based systems through several evaluation metrics. Finally, an experiment with human evaluators was carried out with the aim of measuring the productivity gain in post-editing automatic subtitles generated with the new method presented.This work was partially supported by the project CoMUN-HaT - TIN2015-70924-C2-1-R (MINECO/FEDER).Alvarez, A.; Martínez-Hinarejos, C.; Arzelus, H.; Balenciaga, M.; Del Pozo, A. (2017). Improving the automatic segmentation of subtitles through conditional random field. Speech Communication. 88:83-95. https://doi.org/10.1016/j.specom.2017.01.010S83958

    Speech Recognition Using Augmented Conditional Random Fields

    Get PDF
    Acoustic modeling based on hidden Markov models (HMMs) is employed by state-of-the-art stochastic speech recognition systems. Although HMMs are a natural choice to warp the time axis and model the temporal phenomena in the speech signal, their conditional independence properties limit their ability to model spectral phenomena well. In this paper, a new acoustic modeling paradigm based on augmented conditional random fields (ACRFs) is investigated and developed. This paradigm addresses some limitations of HMMs while maintaining many of the aspects which have made them successful. In particular, the acoustic modeling problem is reformulated in a data driven, sparse, augmented space to increase discrimination. Acoustic context modeling is explicitly integrated to handle the sequential phenomena of the speech signal. We present an efficient framework for estimating these models that ensures scalability and generality. In the TIMIT phone recognition task, a phone error rate of 23.0\% was recorded on the full test set, a significant improvement over comparable HMM-based systems
    • …
    corecore