4,672 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Combining hyperspectral UAV and mulitspectral FORMOSAT-2 imagery for precision agriculture applications

    Get PDF
    Precision agriculture requires detailed information regarding the crop status variability within a field. Remote sensing provides an efficient way to obtain such information through observing biophysical parameters, such as canopy nitrogen content, leaf coverage, and plant biomass. However, individual remote sensing sensors often fail to provide information which meets the spatial and temporal resolution required by precision agriculture. The purpose of this study is to investigate methods which can be used to combine imagery from various sensors in order to create a new dataset which comes closer to meeting these requirements. More specifically, this study combined multispectral satellite imagery (Formosat-2) and hyperspectral Unmanned Aerial Vehicle (UAV) imagery of a potato field in the Netherlands. The imagery from both platforms was combined in two ways. Firstly, data fusion methods brought the spatial resolution of the Formosat-2 imagery (8 m) down to the spatial resolution of the UAV imagery (1 m). Two data fusion methods were applied: an unmixing-based algorithm and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The unmixing-based method produced vegetation indices which were highly correlated to the measured LAI (rs= 0.866) and canopy chlorophyll values (rs=0.884), whereas the STARFM obtained lower correlations. Secondly, a Spectral-Temporal Reflectance Surface (STRS) was constructed to interpolate a daily 101 band reflectance spectra using both sources of imagery. A novel STRS method was presented, which utilizes Bayesian theory to obtain realistic spectra and accounts for sensor uncertainties. The resulting surface obtained a high correlation to LAI (rs=0.858) and canopy chlorophyll (rs=0.788) measurements at field level. The multi-sensor datasets were able to characterize significant differences of crop status due to differing nitrogen fertilization regimes from June to August. Meanwhile, the yield prediction models based purely on the vegetation indices extracted from the unmixing-based fusion dataset explained 52.7% of the yield variation, whereas the STRS dataset was able to explain 72.9% of the yield variability. The results of the current study indicate that the limitations of each individual sensor can be largely surpassed by combining multiple sources of imagery, which is beneficial for agricultural management. Further research could focus on the integration of data fusion and STRS techniques, and the inclusion of imagery from additional sensors.Samenvatting In een wereld waar toekomstige voedselzekerheid bedreigd wordt, biedt precisielandbouw een oplossing die de oogst kan maximaliseren terwijl de economische en ecologische kosten van voedselproductie beperkt worden. Om dit te kunnen doen is gedetailleerde informatie over de staat van het gewas nodig. Remote sensing is een manier om biofysische informatie, waaronder stikstof gehaltes en biomassa, te verkrijgen. De informatie van een individuele sensor is echter vaak niet genoeg om aan de hoge eisen betreft ruimtelijke en temporele resolutie te voldoen. Deze studie combineert daarom de informatie afkomstig van verschillende sensoren, namelijk multispectrale satelliet beelden (Formosat-2) en hyperspectral Unmanned Aerial Vehicle (UAV) beelden van een aardappel veld, in een poging om aan de hoge informatie eisen van precisielandbouw te voldoen. Ten eerste werd gebruik gemaakt van datafusie om de acht Formosat-2 beelden met een resolutie van 8 m te combineren met de vier UAV beelden met een resolutie van 1 m. De resulterende dataset bestaat uit acht beelden met een resolutie van 1 m. Twee methodes werden toegepast, de zogenaamde STARFM methode en een unmixing-based methode. De unmixing-based methode produceerde beelden met een hoge correlatie op de Leaf Area Index (LAI) (rs= 0.866) en chlorofyl gehalte (rs=0.884) gemeten op veldnieveau. De STARFM methode presteerde slechter, met correlaties van respectievelijk rs=0.477 en rs=0.431. Ten tweede werden Spectral-Temporal Reflectance Surfaces (STRSs) ontwikkeld die een dagelijks spectrum weergeven met 101 spectrale banden. Om dit te doen is een nieuwe STRS methode gebaseerd op de Bayesiaanse theorie ontwikkeld. Deze produceert realistische spectra met een overeenkomstige onzekerheid. Deze STRSs vertoonden hoge correlaties met de LAI (rs=0.858) en het chlorofyl gehalte (rs=0.788) gemeten op veldnieveau. De bruikbaarheid van deze twee soorten datasets werd geanalyseerd door middel van de berekening van een aantal vegetatie-indexen. De resultaten tonen dat de multi-sensor datasets capabel zijn om significante verschillen in de groei van gewassen vast te stellen tijdens het groeiseizoen zelf. Bovendien werden regressiemodellen toegepast om de bruikbaarheid van de datasets voor oogst voorspellingen. De unmixing-based datafusie verklaarde 52.7% van de variatie in oogst, terwijl de STRS 72.9% van de variabiliteit verklaarden. De resultaten van het huidige onderzoek tonen aan dat de beperkingen van een individuele sensor grotendeels overtroffen kunnen worden door het gebruik van meerdere sensoren. Het combineren van verschillende sensoren, of het nu Formosat-2 en UAV beelden zijn of andere ruimtelijke informatiebronnen, kan de hoge informatie eisen van de precisielandbouw tegemoet komen.In the context of threatened global food security, precision agriculture is one strategy to maximize yield to meet the increased demands of food, while minimizing both economic and environmental costs of food production. This is done by applying variable management strategies, which means the fertilizer or irrigation rates within a field are adjusted according to the crop needs in that specific part of the field. This implies that accurate crop status information must be available regularly for many different points in the field. Remote sensing can provide this information, but it is difficult to meet the information requirements when using only one sensor. For example, satellites collect imagery regularly and over large areas, but may be blocked by clouds. Unmanned Aerial Vehicles (UAVs), commonly known as drones, are more flexible but have higher operational costs. The purpose of this study was to use fusion methods to combine satellite (Formosat-2) with UAV imagery of a potato field in the Netherlands. Firstly, data fusion was applied. The eight Formosat-2 images with 8 m x 8 m pixels were combined with four UAV images with 1 m x 1 m pixels to obtain a new dataset of eight images with 1 m x 1 m pixels. Unmixing-based data fusion produced images which had a high correlation to field measurements obtained from the potato field during the growing season. The results of a second data fusion method, STARFM, were less reliable in this study. The UAV images were hyperspectral, meaning they contained very detailed information spanning a large part of the electromagnetic spectrum. Much of this information was lost in the data fusion methods because the Formosat-2 images were multispectral, representing a more limited portion of the spectrum. Therefore, a second analysis investigated the use of Spectral-Temporal Reflectance Surfaces (STRS), which allow information from different portions of the electromagnetic spectrum to be combined. These STRS provided daily hyperspectral observations, which were also verified as accurate by comparing them to reference data. Finally, this study demonstrated the ability of both data fusion and STRS to identify which parts of the potato field had lower photosynthetic production during the growing season. Data fusion was capable of explaining 52.7% of the yield variation through regression models, whereas the STRS explained 72.9%. To conclude, this study indicates how to combine crop status information from different sensors to support precision agriculture management decisions

    Spatio-temporal modelling of bluetongue virus distribution in Northern Australia based on remotely sensed bioclimatic variables

    Get PDF
    The presence of Bluetongue virus (BTV) in Northern Australia poses an ongoing threat for animal health and although clinical disease has not been detected in livestock, it limits export of livestock from the infected areas. BTV presence is governed by variable environmental conditions, which influence vector and host habitats. The National Arbovirus Monitoring Program (NAMP) was established to determine the extent of virus activity and control the risk of infection spread. Groups of young cattle, previously unexposed to infection, are regularly tested to detect evidence of transmission. This approach is labour and cost intensive and difficult to operate in the remote areas of Northern Australia. The resulting data are therefore characterised by spatial and temporal gaps. The aim of this research is to assess the use of remotely sensed environmental and climatic data as a means of predicting the distribution of BTV seroprevalence throughout Northern Australia to complement conventional surveillance.Environmental factors relating to the viruses’ host and vector habitats and the transmission cycle of BTV have been identified based on the extensive review of virus ecology. Different data sources have been assessed to provide sufficient spatial and temporal coverage for the definition of spatio-temporal environmental variables that can be used to explain and predict the distribution of BTV. Following this assessment, satellite data products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Tropical Rainfall Measuring Mission (TRMM) were acquired for the Pilbara in Western Australia, and the Northern Territory. These were reprojected and processed into spatio-temporal variables for the period between the years 2000 and 2009. Due to uncertainty in the precision of the geographic location and timing of animals tested for seropositivity, summary statistics of bioclimatic variables were generated at the station (i.e. property) level for each year. Different combinations of these variables, including vegetation greenness and phenology, land surface temperature and precipitation were screened for correlation with BTV presence using a Generalised Additive Model approach. A final model was developed to predict the presence or absence of BTV seropositivity on the basis of statistical significance of the remotely sensed predictor variables, and informed by knowledge of virus ecological principles.The model, based on the maximum seasonal Normalised Difference Vegetation Index (NDVI), and mean and maximum land surface temperature variables provided excellent discriminatory ability and the basis for the generation of prediction maps of BTV seropositivity for the first eight years. Besides internal assessment, the model’s predictive capabilities were validated using monitoring data from the season 2008/09.It has been demonstrated that the predictions are useful in complementing complement NAMP surveillance by identifying areas at higher risk for seropositivity in cattle, which aids planning of livestock movement and further monitoring activities. Uncertainty in the model was attributed to the spatio-temporal inconsistency in the precision of the available serosurveillance data. The discriminatory ability of models of this type could be further improved by ensuring that exact location details and date of NAMP BTV test events are consistently recorded
    • …
    corecore