24,027 research outputs found

    Stochastic and Robust Scheduling in the Cloud

    Get PDF
    Users of cloud computing services are offered rapid access to computing resources via the Internet. Cloud providers use different pricing options such as (i) time slot reservation in advance at a fixed price and (ii) on-demand service at a (hourly) pay-as-used basis. Choosing the best combination of pricing options is a challenging task for users, in particular, when the instantiation of computing jobs underlies uncertainty. We propose a natural model for two-stage scheduling under uncertainty that captures such resource provisioning and scheduling problem in the cloud. Reserving a time unit for processing jobs incurs some cost, which depends on when the reservation is made: a priori decisions, based only on distributional information, are much cheaper than on-demand decisions when the actual scenario is known. We consider both stochastic and robust versions of scheduling unrelated machines with objectives of minimizing the sum of weighted completion times Pj wjCj and the makespan maxj Cj . Our main contribution is an (8+)-approximation algorithm for the min-sum objective for the stochastic polynomial-scenario model. The same technique gives a (7.11 + )- approximation for minimizing the makespan. The key ingredient is an LP-based separation of jobs and time slots to be considered in either the first or the second stage only, and then approximately solving the separated problems. At the expense of another our results hold for any arbitrary scenario distribution given by means of a black-box. Our techniques also yield approximation algorithms for robust two-stage scheduling

    Single machine scheduling problems with uncertain parameters and the OWA criterion

    Get PDF
    In this paper a class of single machine scheduling problems is discussed. It is assumed that job parameters, such as processing times, due dates, or weights are uncertain and their values are specified in the form of a discrete scenario set. The Ordered Weighted Averaging (OWA) aggregation operator is used to choose an optimal schedule. The OWA operator generalizes traditional criteria in decision making under uncertainty, such as the maximum, average, median or Hurwicz criterion. It also allows us to extend the robust approach to scheduling by taking into account various attitudes of decision makers towards the risk. In this paper a general framework for solving single machine scheduling problems with the OWA criterion is proposed and some positive and negative computational results for two basic single machine scheduling problems are provided

    Minimizing value-at-risk in the single-machine total weighted tardiness problem

    Get PDF
    The vast majority of the machine scheduling literature focuses on deterministic problems, in which all data is known with certainty a priori. This may be a reasonable assumption when the variability in the problem parameters is low. However, as variability in the parameters increases incorporating this uncertainty explicitly into a scheduling model is essential to mitigate the resulting adverse effects. In this paper, we consider the celebrated single-machine total weighted tardiness (TWT) problem in the presence of uncertain problem parameters. We impose a probabilistic constraint on the random TWT and introduce a risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) measure on the random TWT at a specified confidence level. Furthermore, we develop a lower bound on the optimal VaR that may also benefit alternate solution approaches in the future. In this study, we implement a tabu-search heuristic to obtain reasonably good feasible solutions and present results to demonstrate the effect of the risk parameter and the value of the proposed model with respect to a corresponding risk-neutral approach

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Greed Works -- Online Algorithms For Unrelated Machine Stochastic Scheduling

    Get PDF
    This paper establishes performance guarantees for online algorithms that schedule stochastic, nonpreemptive jobs on unrelated machines to minimize the expected total weighted completion time. Prior work on unrelated machine scheduling with stochastic jobs was restricted to the offline case, and required linear or convex programming relaxations for the assignment of jobs to machines. The algorithms introduced in this paper are purely combinatorial. The performance bounds are of the same order of magnitude as those of earlier work, and depend linearly on an upper bound on the squared coefficient of variation of the jobs' processing times. Specifically for deterministic processing times, without and with release times, the competitive ratios are 4 and 7.216, respectively. As to the technical contribution, the paper shows how dual fitting techniques can be used for stochastic and nonpreemptive scheduling problems.Comment: Preliminary version appeared in IPCO 201

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time
    corecore