3,227 research outputs found

    Preemptive Scheduling of Equal-Length Jobs to Maximize Weighted Throughput

    Full text link
    We study the problem of computing a preemptive schedule of equal-length jobs with given release times, deadlines and weights. Our goal is to maximize the weighted throughput, which is the total weight of completed jobs. In Graham's notation this problem is described as (1 | r_j;p_j=p;pmtn | sum w_j U_j). We provide an O(n^4)-time algorithm for this problem, improving the previous bound of O(n^{10}) by Baptiste.Comment: gained one author and lost one degree in the complexit

    Task Scheduling in Networks

    Get PDF
    Scheduling a set of tasks on a set of machines so as to yield an efficient schedule is a basic problem in computer science and operations research. Most of the research on this problem incorporates the potentially unrealistic assumption that communication between the different machines is instantaneous. In this paper we remove this assumption and study the problem of network scheduling, where each job originates at some node of a network, and in order to be processed at another node must take the time to travel through the network to that node. Our main contribution is to give approximation algorithms and hardness proofs for fully general forms of the fundamental problems in network scheduling. We consider two basic scheduling objectives: minimizing the makespan and minimizing the average completion time. For the makespan, we prove small constant factor hardness-to-approximate and approximation results. For the average completion time, we give a log-squared approximation algorithm for the most general form of the problem. The techniques used in this approximation are fairly general and have several other applications. For example, we give the first nontrivial approximation algorithm to minimize the average weighted completion time of a set of jobs on related or unrelated machines, with or without a network

    Matroid Coflow Scheduling

    Get PDF
    We consider the matroid coflow scheduling problem, where each job is comprised of a set of flows and the family of sets that can be scheduled at any time form a matroid. Our main result is a polynomial-time algorithm that yields a 2-approximation for the objective of minimizing the weighted completion time. This result is tight assuming P != NP. As a by-product we also obtain the first (2+epsilon)-approximation algorithm for the preemptive concurrent open shop scheduling problem

    Scheduling theory since 1981: an annotated bibliography

    Get PDF

    Energy Efficient Scheduling and Routing via Randomized Rounding

    Get PDF
    We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speed-scaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of scheduling a set of jobs on a set of parallel speed scalable processors in a fully heterogeneous setting. For both the preemptive-non-migratory and the preemptive-migratory variants, our approach allows us to obtain solutions of almost the same quality as for the homogeneous environment. By exploiting the result for the preemptive-non-migratory variant, we are able to improve the best known approximation ratio for the single processor non-preemptive problem. Furthermore, we show that our approach allows to obtain a constant-factor approximation algorithm for the power-aware preemptive job shop scheduling problem. Finally, we consider the min-power routing problem where we are given a network modeled by an undirected graph and a set of uniform demands that have to be routed on integral routes from their sources to their destinations so that the energy consumption is minimized. We improve the best known approximation ratio for this problem.Comment: 27 page
    • …
    corecore