355 research outputs found

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    A classification of predictive-reactive project scheduling procedures.

    Get PDF
    The vast majority of the project scheduling research efforts over the past several years have concentrated on the development of workable predictive baseline schedules, assuming complete information and a static and deterministic environment. During execution, however, a project may be subject to numerous schedule disruptions. Proactive-reactive project scheduling procedures try to cope with these disruptions through the combination of a proactive scheduling procedure for generating predictive baseline schedules that are hopefully robust in that they incorporate safety time to absorb anticipated disruptions with a reactive procedure that is invoked when a schedule breakage occurs during project execution.proactive-reactive project scheduling; time uncertainty; stability; timely project completion; preselective strategies; resource constraints; trade-off; complexity; stability; management; makespan; networks; subject; job;

    Solution and quality robust project scheduling: a methodological framework.

    Get PDF
    The vast majority of the research efforts in project scheduling over the past several years has concentrated on the development of exact and suboptimal procedures for the generation of a baseline schedule assuming complete information and a deterministic environment. During execution, however, projects may be the subject of considerable uncertainty, which may lead to numerous schedule disruptions. Predictive-reactive scheduling refers to the process where a baseline schedule is developed prior to the start of the project and updated if necessary during project execution. It is the objective of this paper to review possible procedures for the generation of proactive (robust) schedules, which are as well as possible protected against schedule disruptions, and for the deployment of reactive scheduling procedures that may be used to revise or re-optimize the baseline schedule when unexpected events occur. We also offer a methodological framework that should allow project management to identify the proper scheduling methodology for different project scheduling environments. Finally, we survey the basics of Critical Chain scheduling and indicate in which environments it is useful.Framework; Information; Management; Processes; Project management; Project scheduling; Project scheduling under uncertainty; Stability; Robust scheduling; Quality; Scheduling; Stability; Uncertainty;

    A novel class of scheduling policies for the stochastic resource-constrained project scheduling problem.

    Get PDF
    We study the resource-constrained project scheduling problem with stochastic activity durations. We introduce a new class of scheduling policies for this problem, which make a number of a-priori sequencing decisions in a pre-processing phase, while the remaining decisions are made dynamically during project execution. The pre-processing decisions entail the addition of precedence constraints to the scheduling instance, hereby resolving some potential resource conflicts. We compare the performance of this new class with existing scheduling policies for the stochastic resource-constrained project scheduling problem, and we observe that the new class is significantly better when the variability in the activity durations is medium to high.Project scheduling; Uncertainty; Stochastic activity durations; Scheduling policies;

    Proactive resource allocation heuristics for robust project scheduling.

    Get PDF
    The well-known deterministic resource-constrained project scheduling problem (RCPSP) involves the determination of a predictive schedule (baseline schedule or pre-schedule) of the project activities that satisfies the finish-start precedence relations and the renewable resource constraints under the objective of minimizing the project duration. This pre-schedule serves as a baseline for the execution of the project. During execution, however, the project can be subject to several types of disruptions that may disturb the baseline schedule. Management must then rely on a reactive scheduling procedure for revising or reoptimizing the pre-schedule. The objective of our research is to develop procedures for allocating resources to the activities of a given baseline schedule in order to maximize its stability. We propose two integer programming based heuristics and report on computational results obtained on a set of benchmark problems.

    Resource-constrained project scheduling for timely project completion with stochastic activity durations.

    Get PDF
    We investigate resource-constrained project scheduling with stochastic activity durations. Various objective functions related to timely project completion are examined, as well as the correlation between these objectives. We develop a GRASP-heuristic to produce high-quality solutions, using so-called descriptive sampling. The algorithm outperforms other existing algorithms for expected-makespan minimization. The distribution of the possible makespan realizations for a given scheduling policy is studied, and problem difficulty is explored as a function of problem parameters.GRASP; Project scheduling; Uncertainty;

    Chance-Constrained Model for RCPSP with Uncertain Durations

    Get PDF

    Heuristic procedures for reactive project scheduling.

    Get PDF
    This paper describes new heuristic reactive project scheduling procedures that may be used to repair resource-constrained roject baseline schedules that suer from multiple activity duration disruptions during project execution.The objective is to minimize the deviations between the baseline schedule and the schedule that is actually realized.We discuss computational results obtained with priority-rule based schedule generation schemes, a sampling approach and a weighted-earliness tardiness heuristic on a set of randomly generated project instances.Project scheduling; Scheduling; Reactive scheduling; Research; Uncertainty; Stability;

    Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    Research concerning project planning under uncertainty has primarily focused on the stochastic resource-constrained project scheduling problem (stochastic RCPSP), an extension of the basic CPSP, in which the assumption of deterministic activity durations is dropped. In this paper, we introduce a new variant of the RCPSP for which the uncertainty is modeled by means of resource availabilities that are subject to unforeseen breakdowns. Our objective is to build a robust schedule that meets the project due date and minimizes the schedule instability cost, defined as the expected weighted sum of the absolute deviations between the planned and actually realized activity starting times during project execution. We describe how stochastic resource breakdowns can be modeled, which reaction is recommended when are source infeasibility occurs due to a breakdown and how one can protect the initial schedule from the adverse effects of potential breakdowns.
    corecore