37,296 research outputs found

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Do Labor Markets Provide Enough Short Hour Jobs? An Analysis of Work Hours and Work Incentives

    Get PDF
    This paper examines the role that work incentives play in the determination of work hours. Following previous research by Lang (1989), we use a conventional efficiency wage model to analyze how firms respond to worker preferences regarding wage-hours packages. We find that when workers are homogeneous, the role of worker preferences in determining work hours is similar to the simple neoclassical model of labor supply. For instance, if worker preferences shift in favor of shorter hours, firms will respond by offering jobs entailing shorter hours. When workers have heterogeneous preferences, however, employers will want to use a worker's hours preferences as a signal for the responsiveness of the worker to the work incentives used by the firm, and workers in turn may not reveal their hours preferences. Our key finding in this instance is that the labor market equilibrium may be characterized by a sub-optimal number of short-hour jobs. This shortage of short-hour jobs is likely to be found in high wage labor markets.

    How Does Technology Affect Skill Demand? Technical Changes and Capital-Skill Complementarity in the 21st Century

    Get PDF
    This paper attempts to examine technology’s impact on the labor market through the lens of skilled labor. Technical changes in the late 20th century are skill-biased in nature, because they are found to complement with skilled labor who are adept at adopting new technologies. However, recent studies document a lower demand for high-skilled labor in the 21st century, compared with the late 20th century. Are technologies starting to substitute for human skills instead of complementing them? Drawing on the wage share data from 1975 to 2015 for 18 sectors in the United States, I find strong and robust evidence of complementary relationships between technical changes and demand for skilled labor. Furthermore, my results suggest that technologies have become more skilled-biased, not less, in the 21st century

    MOON: MapReduce On Opportunistic eNvironments

    Get PDF
    Abstract—MapReduce offers a flexible programming model for processing and generating large data sets on dedicated resources, where only a small fraction of such resources are every unavailable at any given time. In contrast, when MapReduce is run on volunteer computing systems, which opportunistically harness idle desktop computers via frameworks like Condor, it results in poor performance due to the volatility of the resources, in particular, the high rate of node unavailability. Specifically, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate for resources with high unavailability. To address this, we propose MOON, short for MapReduce On Opportunistic eNvironments. MOON extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms in order to offer reliable MapReduce services on a hybrid resource architecture, where volunteer computing systems are supplemented by a small set of dedicated nodes. The adaptive task and data scheduling algorithms in MOON distinguish between (1) different types of MapReduce data and (2) different types of node outages in order to strategically place tasks and data on both volatile and dedicated nodes. Our tests demonstrate that MOON can deliver a 3-fold performance improvement to Hadoop in volatile, volunteer computing environments
    corecore