8,030 research outputs found

    Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals

    Full text link
    We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound

    Age Optimal Information Gathering and Dissemination on Graphs

    Full text link
    We consider the problem of timely exchange of updates between a central station and a set of ground terminals VV, via a mobile agent that traverses across the ground terminals along a mobility graph G=(V,E)G = (V, E). We design the trajectory of the mobile agent to minimize peak and average age of information (AoI), two newly proposed metrics for measuring timeliness of information. We consider randomized trajectories, in which the mobile agent travels from terminal ii to terminal jj with probability Pi,jP_{i,j}. For the information gathering problem, we show that a randomized trajectory is peak age optimal and factor-8H8\mathcal{H} average age optimal, where H\mathcal{H} is the mixing time of the randomized trajectory on the mobility graph GG. We also show that the average age minimization problem is NP-hard. For the information dissemination problem, we prove that the same randomized trajectory is factor-O(H)O(\mathcal{H}) peak and average age optimal. Moreover, we propose an age-based trajectory, which utilizes information about current age at terminals, and show that it is factor-22 average age optimal in a symmetric setting

    Status Updates in a multi-stream M/G/1/1 preemptive queue

    Full text link
    We consider a source that collects a multiplicity of streams of updates and sends them through a network to a monitor. However, only a single update can be in the system at a time. Therefore, the transmitter always preempts the packet being served when a new update is generated. We consider Poisson arrivals for each stream and a common general service time, and refer to this system as the multi-stream M/G/1/1 queue with preemption. Using the detour flow graph method, we compute a closed form expression for the average age and the average peak age of each stream. Moreover, we deduce that although all streams are treated equally from a transmission point of view (they all preempt each other), one can still prioritize a stream from an age point of view by simply increasing its generation rate. However, this will increase the sum of the ages which is minimized when all streams have the same update rate
    • …
    corecore