9,675 research outputs found

    Minimizing Finite Sums with the Stochastic Average Gradient

    Get PDF
    We propose the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method's iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from O(1/k^{1/2}) to O(1/k) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O(1/k) to a linear convergence rate of the form O(p^k) for p \textless{} 1. Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.Comment: Revision from January 2015 submission. Major changes: updated literature follow and discussion of subsequent work, additional Lemma showing the validity of one of the formulas, somewhat simplified presentation of Lyapunov bound, included code needed for checking proofs rather than the polynomials generated by the code, added error regions to the numerical experiment

    A Lower Bound for the Optimization of Finite Sums

    Full text link
    This paper presents a lower bound for optimizing a finite sum of nn functions, where each function is LL-smooth and the sum is μ\mu-strongly convex. We show that no algorithm can reach an error ϵ\epsilon in minimizing all functions from this class in fewer than Ω(n+n(κ1)log(1/ϵ))\Omega(n + \sqrt{n(\kappa-1)}\log(1/\epsilon)) iterations, where κ=L/μ\kappa=L/\mu is a surrogate condition number. We then compare this lower bound to upper bounds for recently developed methods specializing to this setting. When the functions involved in this sum are not arbitrary, but based on i.i.d. random data, then we further contrast these complexity results with those for optimal first-order methods to directly optimize the sum. The conclusion we draw is that a lot of caution is necessary for an accurate comparison, and identify machine learning scenarios where the new methods help computationally.Comment: Added an erratum, we are currently working on extending the result to randomized algorithm

    Proximal Stochastic Newton-type Gradient Descent Methods for Minimizing Regularized Finite Sums

    Full text link
    In this work, we generalized and unified recent two completely different works of Jascha \cite{sohl2014fast} and Lee \cite{lee2012proximal} respectively into one by proposing the \textbf{prox}imal s\textbf{to}chastic \textbf{N}ewton-type gradient (PROXTONE) method for optimizing the sums of two convex functions: one is the average of a huge number of smooth convex functions, and the other is a non-smooth convex function. While a set of recently proposed proximal stochastic gradient methods, include MISO, Prox-SDCA, Prox-SVRG, and SAG, converge at linear rates, the PROXTONE incorporates second order information to obtain stronger convergence results, that it achieves a linear convergence rate not only in the value of the objective function, but also in the \emph{solution}. The proof is simple and intuitive, and the results and technique can be served as a initiate for the research on the proximal stochastic methods that employ second order information.Comment: arXiv admin note: text overlap with arXiv:1309.2388, arXiv:1403.4699 by other author

    Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure

    Get PDF
    Stochastic optimization algorithms with variance reduction have proven successful for minimizing large finite sums of functions. Unfortunately, these techniques are unable to deal with stochastic perturbations of input data, induced for example by data augmentation. In such cases, the objective is no longer a finite sum, and the main candidate for optimization is the stochastic gradient descent method (SGD). In this paper, we introduce a variance reduction approach for these settings when the objective is composite and strongly convex. The convergence rate outperforms SGD with a typically much smaller constant factor, which depends on the variance of gradient estimates only due to perturbations on a single example.Comment: Advances in Neural Information Processing Systems (NIPS), Dec 2017, Long Beach, CA, United State
    corecore