524 research outputs found

    Learning with online constraints : shifting concepts and active learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 99-102).Many practical problems such as forecasting, real-time decision making, streaming data applications, and resource-constrained learning, can be modeled as learning with online constraints. This thesis is concerned with analyzing and designing algorithms for learning under the following online constraints: i) The algorithm has only sequential, or one-at-time, access to data. ii) The time and space complexity of the algorithm must not scale with the number of observations. We analyze learning with online constraints in a variety of settings, including active learning. The active learning model is applicable to any domain in which unlabeled data is easy to come by and there exists a (potentially difficult or expensive) mechanism by which to attain labels. First, we analyze a supervised learning framework in which no statistical assumptions are made about the sequence of observations, and algorithms are evaluated based on their regret, i.e. their relative prediction loss with respect to the hindsight-optimal algorithm in a comparator class. We derive a, lower bound on regret for a class of online learning algorithms designed to track shifting concepts in this framework. We apply an algorithm we provided in previous work, that avoids this lower bound, to an energy-management problem in wireless networks, and demonstrate this application in a network simulation.(cont.) Second, we analyze a supervised learning framework in which the observations are assumed to be iid, and algorithms are compared by the number of prediction mistakes made in reaching a target generalization error. We provide a lower bound on mistakes for Perceptron, a standard online learning algorithm, for this framework. We introduce a modification to Perceptron and show that it avoids this lower bound, and in fact attains the optimal mistake-complexity for this setting. Third, we motivate and analyze an online active learning framework. The observations are assumed to be iid, and algorithms are judged by the number of label queries to reach a target generalization error. Our lower bound applies to the active learning setting as well, as a lower bound on labels for Perceptron paired with any active learning rule. We provide a new online active learning algorithm that avoids the lower bound, and we upper bound its label-complexity. The upper bound is optimal and also bounds the algorithm's total errors (labeled and unlabeled). We analyze the algorithm further, yielding a label-complexity bound under relaxed assumptions. Using optical character recognition data, we empirically compare the new algorithm to an online active learning algorithm with data-dependent performance guarantees, as well as to the combined variants of these two algorithms.by Claire E. Monteleoni.Ph.D

    Qos-aware fine-grained power management in networked computing systems

    Get PDF
    Power is a major design concern of today\u27s networked computing systems, from low-power battery-powered mobile and embedded systems to high-power enterprise servers. Embedded systems are required to be power efficiency because most embedded systems are powered by battery with limited capacity. Similar concern of power expenditure rises as well in enterprise server environments due to cooling requirement, power delivery limit, electricity costs as well as environment pollutions. The power consumption in networked computing systems includes that on circuit board and that for communication. In the context of networked real-time systems, the power dissipation on wireless communication is more significant than that on circuit board. We focus on packet scheduling for wireless real-time systems with renewable energy resources. In such a scenario, it is required to transmit data with higher level of importance periodically. We formulate this packet scheduling problem as an NP-hard reward maximization problem with time and energy constraints. An optimal solution with pseudo polynomial time complexity is presented. In addition, we propose a sub-optimal solution with polynomial time complexity. Circuit board, especially processor, power consumption is still the major source of system power consumption. We provide a general-purposed, practical and comprehensive power management middleware for networked computing systems to manage circuit board power consumption thus to affect system-level power consumption. It has the functionalities of power and performance monitoring, power management (PM) policy selection and PM control, as well as energy efficiency analysis. This middleware includes an extensible PM policy library. We implemented a prototype of this middleware on Base Band Units (BBUs) with three PM policies enclosed. These policies have been validated on different platforms, such as enterprise servers, virtual environments and BBUs. In enterprise environments, the power dissipation on circuit board dominates. Regulation on computing resources on board has a significant impact on power consumption. Dynamic Voltage and Frequency Scaling (DVFS) is an effective technique to conserve energy consumption. We investigate system-level power management in order to avoid system failures due to power capacity overload or overheating. This management needs to control the power consumption in an accurate and responsive manner, which cannot be achieve by the existing black-box feedback control. Thus we present a model-predictive feedback controller to regulate processor frequency so that power budget can be satisfied without significant loss on performance. In addition to providing power guarantee alone, performance with respect to service-level agreements (SLAs) is required to be guaranteed as well. The proliferation of virtualization technology imposes new challenges on power management due to resource sharing. It is hard to achieve optimization in both power and performance on shared infrastructures due to system dynamics. We propose vPnP, a feedback control based coordination approach providing guarantee on application-level performance and underlying physical host power consumption in virtualized environments. This system can adapt gracefully to workload change. The preliminary results show its flexibility to achieve different levels of tradeoffs between power and performance as well as its robustness over a variety of workloads. It is desirable for improve energy efficiency of systems, such as BBUs, hosting soft-real time applications. We proposed a power management strategy for controlling delay and minimizing power consumption using DVFS. We use the Robbins-Monro (RM) stochastic approximation method to estimate delay quantile. We couple a fuzzy controller with the RM algorithm to scale CPU frequency that will maintain performance within the specified QoS

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    Traffic-aware techniques to reduce 3G/LTE wireless energy consumption

    Get PDF
    The 3G/LTE wireless interface is a significant contributor to battery drain on mobile devices. A large portion of the energy is consumed by unnecessarily keeping the mobile device's radio in its "Active" mode even when there is no traffic. This paper describes the design of methods to reduce this portion of energy consumption by learning the traffic patterns and predicting when a burst of traffic will start or end. We develop a technique to determine when to change the radio's state from Active to Idle, and another to change the radio's state from Idle to Active. In evaluating the methods on real usage data from 9 users over 28 total days on four different carriers, we find that the energy savings range between 51% and 66% across the carriers for 3G, and is 67% on the Verizon LTE network. When allowing for delays of a few seconds (acceptable for background applications), the energy savings increase to between 62% and 75% for 3G, and 71% for LTE. The increased delays reduce the number of state switches to be the same as in current networks with existing inactivity timers.National Science Foundation (U.S.) (Grant CNS-0931550

    Sleep Mode Analysis via Workload Decomposition

    Full text link
    The goal of this paper is to establish a general approach for analyzing queueing models with repeated inhomogeneous vacations. The server goes on for a vacation if the inactivity prolongs more than the vacation trigger duration. Once the system enters in vacation mode, it may continue for several consecutive vacations. At the end of a vacation, the server goes on another vacation, possibly with a different probability distribution; if during the previous vacation there have been no arrivals. However the system enters in vacation mode only if the inactivity is persisted beyond defined trigger duration. In order to get an insight on the influence of parameters on the performance, we choose to study a simple M/G/1 queue (Poisson arrivals and general independent service times) which has the advantage of being tractable analytically. The theoretical model is applied to the problem of power saving for mobile devices in which the sleep durations of a device correspond to the vacations of the server. Various system performance metrics such as the frame response time and the economy of energy are derived. A constrained optimization problem is formulated to maximize the economy of energy achieved in power save mode, with constraints as QoS conditions to be met. An illustration of the proposed methods is shown with a WiMAX system scenario to obtain design parameters for better performance. Our analysis allows us not only to optimize the system parameters for a given traffic intensity but also to propose parameters that provide the best performance under worst case conditions

    Learning with Online Constraints: Shifting Concepts and Active Learning

    Get PDF
    PhD thesisMany practical problems such as forecasting, real-time decisionmaking, streaming data applications, and resource-constrainedlearning, can be modeled as learning with online constraints. Thisthesis is concerned with analyzing and designing algorithms forlearning under the following online constraints: 1) The algorithm hasonly sequential, or one-at-time, access to data. 2) The time andspace complexity of the algorithm must not scale with the number ofobservations. We analyze learning with online constraints in avariety of settings, including active learning. The active learningmodel is applicable to any domain in which unlabeled data is easy tocome by and there exists a (potentially difficult or expensive)mechanism by which to attain labels.First, we analyze a supervised learning framework in which nostatistical assumptions are made about the sequence of observations,and algorithms are evaluated based on their regret, i.e. theirrelative prediction loss with respect to the hindsight-optimalalgorithm in a comparator class. We derive a lower bound on regretfor a class of online learning algorithms designed to track shiftingconcepts in this framework. We apply an algorithm we provided inprevious work, that avoids this lower bound, to an energy-managementproblem in wireless networks, and demonstrate this application in anetwork simulation. Second, we analyze a supervised learning frameworkin which the observations are assumed to be iid, and algorithms arecompared by the number of prediction mistakes made in reaching atarget generalization error. We provide a lower bound on mistakes forPerceptron, a standard online learning algorithm, for this framework.We introduce a modification to Perceptron and show that it avoids thislower bound, and in fact attains the optimal mistake-complexity forthis setting.Third, we motivate and analyze an online active learning framework.The observations are assumed to be iid, and algorithms are judged bythe number of label queries to reach a target generalizationerror. Our lower bound applies to the active learning setting as well,as a lower bound on labels for Perceptron paired with any activelearning rule. We provide a new online active learning algorithm thatavoids the lower bound, and we upper bound its label-complexity. Theupper bound is optimal and also bounds the algorithm's total errors(labeled and unlabeled). We analyze the algorithm further, yielding alabel-complexity bound under relaxed assumptions. Using opticalcharacter recognition data, we empirically compare the new algorithmto an online active learning algorithm with data-dependent performanceguarantees, as well as to the combined variants of these twoalgorithms

    Watts2Share: Energy-Aware Traffic Consolidation

    Full text link
    Energy consumption is becoming the Achilles' heel of the mobile user quality of experience partly due to undisciplined use of the cellular (3G) transmissions by applications. The operator infrastructure is typically configured for peak performance, whereas during periods of underutilisation the handsets pay the price by staying in high energy states even if each application only uses a fraction of the maximum available bandwidth. In this paper we promote a bi-radio scenario where instead of independently using own cellular connections, several users share a single cellular link offered by one member of a coalition (a rotating aggregator). We present Watts2Share, an architecture for energy-aware traffic consolidation whereby group members' data flows transmitted through a second radio (e.g., WiFi) are aggregated by the aggregator and retransmitted through the cellular link. Through careful and repeatable studies we demonstrate that this scheme saves up to 68% of the total transmission energy in handsets compared to a pure 3G scenario. The studies are based on a wide range of real traffic traces and real cellular operator settings, and further illustrate that this scheme reduces the overall energy by reducing the signalling overhead, as well as extending the lifetime of all handsets
    corecore