96 research outputs found

    Improving data center efficiency through smart grid integration and intelligent analytics

    Full text link
    The ever-increasing growth of the demand in IT computing, storage and large-scale cloud services leads to the proliferation of data centers that consist of (tens of) thousands of servers. As a result, data centers are now among the largest electricity consumers worldwide. Data center energy and resource efficiency has started to receive significant attention due to its economical, environmental, and performance impacts. In tandem, facing increasing challenges in stabilizing the power grids due to growing needs of intermittent renewable energy integration, power market operators have started to offer a number of demand response (DR) opportunities for energy consumers (such as data centers) to receive credits by modulating their power consumption dynamically following specific requirements. This dissertation claims that data centers have strong capabilities to emerge as major enablers of substantial electricity integration from renewables. The participation of data centers into emerging DR, such as regulation service reserves (RSRs), enables the growth of the data center in a sustainable, environmentally neutral, or even beneficial way, while also significantly reducing data center electricity costs. In this dissertation, we first model data center participation in DR, and then propose runtime policies to dynamically modulate data center power in response to independent system operator (ISO) requests, leveraging advanced server power and workload management techniques. We also propose energy and reserve bidding strategies to minimize the data center energy cost. Our results demonstrate that a typical data center can achieve up to 44% monetary savings in its electricity cost with RSR provision, dramatically surpassing savings achieved by traditional energy management strategies. In addition, we investigate the capabilities and benefits of various types of energy storage devices (ESDs) in DR. Finally, we demonstrate RSR provision in practice on a real server. In addition to its contributions on improving data center energy efficiency, this dissertation also proposes a novel method to address data center management efficiency. We propose an intelligent system analytics approach, "discovery by example", which leverages fingerprinting and machine learning methods to automatically discover software and system changes. Our approach eases runtime data center introspection and reduces the cost of system management.2018-11-04T00:00:00

    Balancing the use of batteries and opportunistic scheduling policies for maximizing renewable energy consumption in a Cloud data center

    Get PDF
    International audienceThe fast growth of cloud computing considerably increases the energy consumption of cloud infrastructures, especially , data centers. To reduce brown energy consumption and carbon footprint, renewable energy such as solar/wind energy is considered recently to supply new green data centers. As renewable energy is intermittent and fluctuates from time to time, this paper considers two fundamental approaches for improving the usage of renewable energy in a small/medium-sized data center. One approach is based on opportunistic scheduling: more jobs are performed when renewable energy is available. The other approach relies on Energy Storage Devices (ESDs), which store renewable energy surplus at first and then, provide energy to the data center when renewable energy becomes unavailable. In this paper, we explore these two means to maximize the utilization of on-site renewable energy for small data centers. By using real-world job workload and solar energy traces, our experimental results show the energy consumption with varying battery size and solar panel dimensions for opportunistic scheduling or ESD-only solution. The results also demonstrate that opportunistic scheduling can reduce the demand for ESD capacity. Finally, we find an intermediate solution mixing both approaches in order to achieve a balance in all aspects, implying minimizing the renewable energy losses. It also saves brown energy consumption by up to 33% compared to ESD-only solution

    Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm

    Full text link
    The implementation of a multi-microgrid (MMG) system with multiple renewable energy sources enables the facilitation of electricity trading. To tackle the energy management problem of a MMG system, which consists of multiple renewable energy microgrids belonging to different operating entities, this paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework. To enhance the generalization ability of dealing with various uncertainties, we also propose an improved multi-agent soft actor-critic (MASAC) algorithm, which facilitates en-ergy transactions between multi-agents in MMG, and employs automated machine learning (AutoML) to optimize the MASAC hyperparameters to further improve the generalization of deep reinforcement learning (DRL). The test results demonstrate that the proposed method successfully achieves power complementarity between different entities, and reduces the MMG system operating cost. Additionally, the proposal significantly outperforms other state-of-the-art reinforcement learning algorithms with better economy and higher calculation efficiency.Comment: Accepted by Energie

    Resource management for cost-effective cloud and edge systems

    Get PDF
    With the booming of Internet-based and cloud/edge computing applications and services,datacenters hosting these services have become ubiquitous in every sector of our economy which leads to tremendous research opportunities. Specifically, in cloud computing, all data are gathered and processed in centralized cloud datacenters whereas in edge computing, the frontier of data and services is pushed away from the centralized cloud to the edge of the network. By fusing edge computing with cloud computing, the Internet companies and end users can benefit from their respective merits, abundant computation and storage resources from cloud computing, and the data-gathering potential of edge computing. However, resource management in cloud and edge systems is complicated and challenging due to the large scale of cloud datacenters, diverse interconnected resource types, unpredictable generated workloads, and a range of performance objectives. It necessitates the systematic modeling of cloud and edge systems to achieve desired performance objectives.This dissertation presents a holistic system modeling and novel solution methodology to effectivelysolve the optimization problems formulated in three cloud and edge architectures: 1) cloud computing in colocation datacenters; 2) cloud computing in geographically distributed datacenters; 3) UAV-enabled mobile edge computing. First, we study resource management with the goal of overall cost minimization in the context of cloud computing systems. A cooperative game is formulated to model the scenario where a multi-tenant colocation datacenter collectively procures electricity in the wholesale electricity market. Then, a two-stage stochastic programming is formulated to model the scenario where geographically distributed datacenters dispatch workload and procure electricity in the multi-timescale electricity markets. Last, we extend our focus on joint task offloading and resource management with the goal of overall cost minimization in the context of edge computing systems, where edge nodes with computing capabilities are deployed in proximity to end users. A nonconvex optimization problem is formulated in the UAV-enabled mobile edge computing system with the goal of minimizing both energy consumption for computation and task offloading and system response delay. Furthermore, a novel hybrid algorithm that unifies differential evolution and successive convex approximation is proposed to efficiently solve the problem with improved performance.This dissertation addresses several fundamental issues related to resource management incloud and edge computing systems that will further in-depth investigations to improve costeffective performance. The advanced modeling and efficient algorithms developed in this research enable the system operator to make optimal and strategic decisions in resource allocation and task offloading for cost savings

    Towards Power- and Energy-Efficient Datacenters

    Full text link
    As the Internet evolves, cloud computing is now a dominant form of computation in modern lives. Warehouse-scale computers (WSCs), or datacenters, comprising the foundation of this cloud-centric web have been able to deliver satisfactory performance to both the Internet companies and the customers. With the increased focus and popularity of the cloud, however, datacenter loads rise and grow rapidly, and Internet companies are in need of boosted computing capacity to serve such demand. Unfortunately, power and energy are often the major limiting factors prohibiting datacenter growth: it is often the case that no more servers can be added to datacenters without surpassing the capacity of the existing power infrastructure. This dissertation aims to investigate the issues of power and energy usage in a modern datacenter environment. We identify the source of power and energy inefficiency at three levels in a modern datacenter environment and provides insights and solutions to address each of these problems, aiming to prepare datacenters for critical future growth. We start at the datacenter-level and find that the peak provisioning and improper service placement in multi-level power delivery infrastructures fragment the power budget inside production datacenters, degrading the compute capacity the existing infrastructure can support. We find that the heterogeneity among datacenter workloads is key to address this issue and design systematic methods to reduce the fragmentation and improve the utilization of the power budget. This dissertation then narrow the focus to examine the energy usage of individual servers running cloud workloads. Especially, we examine the power management mechanisms employed in these servers and find that the coarse time granularity of these mechanisms is one critical factor that leads to excessive energy consumption. We propose an intelligent and low overhead solution on top of the emerging finer granularity voltage/frequency boosting circuit to effectively pinpoints and boosts queries that are likely to increase the tail distribution and can reap more benefit from the voltage/frequency boost, improving energy efficiency without sacrificing the quality of services. The final focus of this dissertation takes a further step to investigate how using a fundamentally more efficient computing substrate, field programmable gate arrays (FPGAs), benefit datacenter power and energy efficiency. Different from other types of hardware accelerations, FPGAs can be reconfigured on-the-fly to provide fine-grain control over hardware resource allocation and presents a unique set of challenges for optimal workload scheduling and resource allocation. We aim to design a set coordinated algorithms to manage these two key factors simultaneously and fully explore the benefit of deploying FPGAs in the highly varying cloud environment.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144043/1/hsuch_1.pd

    Demand-Side Management for Energy-efficient Data Center Operations with Renewable Energy and Demand Response

    Get PDF
    In recent years, we have noticed tremendous increase of energy consumption and carbon pollution in the industrial sector, and many energy-intensive industries are striving to reduce energy cost and to have a positive impact on the environment. In this context, this dissertation is motivated by opportunities to reduce energy cost from demand-side perspective. Specifically, industries have an opportunity to reduce energy consumption by improving energy-efficiency in their system operations. By improving utilization of their resources, they can reduce waste of energy, and thus, they are able to prevent paying unnecessary energy cost. In addition, because of today‘s high penetration of renewable generation (e.g. wind or solar), many industries consider renewable energy as a promising solution to reduce energy cost and carbon pollution, and they have tried to utilize renewable energy to meet their power demand by installing on-site generation facilities (e.g. PV panels on roof top) or making a contract with renewable generation farms. Moreover, it is becoming common for energy markets to allow industries to directly purchase electricity from them while providing the industries with day-ahead and real-time electricity price information. In this situation, industries have an opportunity to adjust purchase and consumption of energy in response to time-varying electricity price and intermittent renewable generation to reduce their energy procurement cost, which are called demand response. Considering these opportunities, it is anticipated that the industrial sector can save a significant amount of energy cost, however, time-varying behavior, uncertainty and stochasticity in system operations, power demand, renewable energy, and electricity price make it challenging to determine optimal operational decision. Motivated by the aforementioned opportunities as well as challenges, this dissertation focuses on developing decision-making methodologies tailored for demand-side energy system operations to improve energy-efficiency based on energy-aware system operations and reduce energy procurement cost by utilizing renewable energy and demand response in an integrated fashion to optimally reduce energy cost. For practical application, this dissertation considers real-world practices in data centers including their operations management and power procurement for the following research tasks: (i) develop a server provisioning algorithm that dynamically adapts server operations in response to heterogeneous and time-varying workloads to reduce energy consumption while providing performance guarantees based on time-stability; (ii) propose stochastic optimization models for optimal energy procurement to determine purchase and consumption of energy based on day-ahead and real-time energy market operations considering utilization of renewable energy based on demand response; (iii) suggest a decision-making model that integrate the proposed server provisioning algorithm with energy procurement to achieve energy-efficiency in data center operations to reduce both energy consumption and energy cost against variability and uncertainty. In terms of methodologies, this study uses operations research techniques including deterministic and stochastic models, such as, queueing analysis, mixed-integer program, Markov decision process, two-stage stochastic program, and probabilistic constrained program. In conclusion, this dissertation claims that renewable energy, demand response, and energy storage are worth to be considered for data center operations to reduce energy consumption and procurement cost. Although variability and uncertainty in system operations, renewable generation, and electricity price make it challenging to determine optimal operational decisions, numerical results show that the proposed optimization problems can be efficiently solved by the developed algorithm. The proposed decision-making methodologies can also be extended to other industries, and thus, this dissertation study would be a good starting point to study demand-side management in energy system operations

    Marshall Space Flight Center Research and Technology Report 2018

    Get PDF
    Many of NASAs missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASAs strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASAs ability to fulfill the ambitious goals of innovation, exploration, and discovery

    High Resolution X-ray and Neutron Crystallographic Studies of \u3cem\u3eEscherichia coli\u3c/em\u3e Dihydrofolate Reductase

    Get PDF
    Dihydrofolate Reductases (DHFRs) have been identified in nearly every proteome and are essential for most biosynthetic pathways involving one-carbon transfer reactions due to their recycling of tetrahydrofolate (THF). They catalyze the NADPH-dependent reduction of dihydrofolate (DHF), producing THF. Inhibition of DHFR ultimately depletes cellular pools of THF; causing a reduced supply of thymine nucleotides for DNA synthesis, resulting in genomic instability and cell death. Therefore, DHFRs remain important drug targets in antimicrobial and chemotherapeutic treatments. Despite exhaustive investigation of E. coli chromosomal DHFR, controversy persists over the dynamics of regulatory loops (the Met20, the ÎČF-ÎČG, and the ÎČG-ÎČH) and the nature of the interaction between methotrexate (MTX), a tight-binding anti-cancer drug, and Asp 27, the only ionizable residue in the active site. Also of importance is the ionization state of Asp 27 in the apoenzyme and other complexes. Hydrogen atoms (H) likely play a critical role in DHFR ligand binding and catalysis, yet are difficult to directly visualize. High resolution X-ray and neutron crystallography have been utilized in this dissertation to provide accurate positions of H within the DHFR active site and to probe dynamics of the enzyme. The ultrahigh resolution X-ray structures of DHFR/MTX (1.0Å; chapter 4), apo DHFR (1.05Å), and DHFR/MTX/NADPH (1.4Å; both chapter 5) have been solved. Novel features were observed in the electron density maps, including the ability to model the Met20 loop in the apoenzyme as closed (reported disordered previously) and alternate side chain conformations in all the structures. The high data-to-parameter ratio of the apoenzyme and the MTX data sets allowed anisotropic B-factor refinement and full-matrix refinement to calculate carboxylate bond lengths and estimates of their deviations. The apoenzyme has highly different bond lengths for its Asp 27 carboxylate, thus, it is neutral at physiological pH. The carboxylate bond lengths of the Asp 27 in both the monomers of the asymmetric unit of the DHFR/MTX crystal are nearly equal, suggesting it is charged at physiological pH. If H is substituted for deuterium (D), neutrons are especially powerful probes due to D’s strong positive scattering length. To assign protonation states to the MTX and the Asp 27 by the direct identification of D, a neutron structure has been solved to 2.2Å resolution from nearly 80% complete data collected on a 0.3mm3 crystal (chapter 4). Prerequisite to the neutron experiment was the growth and D2O-soaking of large-volume crystals (chapter 3). The DHFR/MTX cocrystal possesses the largest primitive unit cell and is the smallest D2O-soaked crystal used successfully in a neutron diffraction experiment. This is the 11th novel protein ever to be solved by neutron crystallography (the 16th total structure). Nearly 2/3 of the amide backbone has undergone H/D exchange, an indicator of protein dynamics. However, monomer B, where the Met20 loop is closed, is ~10% more exchanged than monomer A, where the Met20 loop is partially occluded. Based on results from D occupancy refinement and analysis of the neutron maps, it is concluded that the MTX N1 is protonated when bound to DHFR. Paired with the X-ray data, this is new strong evidence that the Asp 27·MTX interaction is ionic in nature. To increase the signal-to-noise ratio in future neutron experiments, perdeuterated protein has been produced and its D enrichment measured by mass spectrometry. X-ray data (to 1.2Å) has now been collected on a perdeuterated DHFR/MTX cocrystal and it is isomorphous to the native cocrystals (chapter 3)
    • 

    corecore