1,547 research outputs found

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    Power-aware scheduling with effective task migration for real-time multicore embedded systems

    Full text link
    A major design issue in embedded systems is reducing the power consumption because batteries have a limited energy budget. For this purpose, several techniques such as dynamic voltage and frequency scaling (DVFS) or task migration are being used. DVFS allows reducing power by selecting the optimal voltage supply, whereas task migration achieves this effect by balancing the workload among cores. This paper focuses on power-aware scheduling allowing task migration to reduce energy consumption in multicore embedded systems implementing DVFS capabilities. To address energy savings, the devised schedulers follow two main rules: migrations are allowed at specific points of time and only one task is allowed to migrate each time. Two algorithms have been proposed working under real-time constraints. The simpler algorithm, namely, single option migration (SOM) only checks just one target core before performing a migration. In contrast, the multiple option migration (MOM) searches the optimal target core. In general, the MOM algorithm achieves better energy savings than the SOM algorithm, although differences are wider for a reduced number of cores and frequency/voltage levels. Moreover, the MOM algorithm reduces energy consumption as much as 40% over the worst fit algorithm.This work was supported by the Spanish MICINN, Consolider Programme and Plan E funds, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04-01.March Cabrelles, JL.; Sahuquillo Borrás, J.; Petit Martí, SV.; Hassan Mohamed, H.; Duato Marín, JF. (2013). Power-aware scheduling with effective task migration for real-time multicore embedded systems. Concurrency and Computation: Practice and Experience. 25(14):1987-2001. doi:10.1002/cpe.2899S198720012514Euiseong Seo, Jinkyu Jeong, Seonyeong Park, & Joonwon Lee. (2008). Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1540-1552. doi:10.1109/tpds.2008.104March, J. L., Sahuquillo, J., Hassan, H., Petit, S., & Duato, J. (2011). A New Energy-Aware Dynamic Task Set Partitioning Algorithm for Soft and Hard Embedded Real-Time Systems. The Computer Journal, 54(8), 1282-1294. doi:10.1093/comjnl/bxr008AlEnawy, T. A., & Aydin, H. (s. f.). Energy-Aware Task Allocation for Rate Monotonic Scheduling. 11th IEEE Real Time and Embedded Technology and Applications Symposium. doi:10.1109/rtas.2005.20Intel atom processor microarchitecture www.intel.com/Marvell ARMADA TM 628 Marvell Semiconductor, Inc. Santa Clara, CA, USA http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdfMcNairy, C., & Bhatia, R. (2005). Montecito: A Dual-Core, Dual-Thread Itanium Processor. IEEE Micro, 25(2), 10-20. doi:10.1109/mm.2005.34Kalla, R., Sinharoy, B., & Tendler, J. M. (2004). IBM power5 chip: a dual-core multithreaded processor. IEEE Micro, 24(2), 40-47. doi:10.1109/mm.2004.1289290Shah A Arm plans to add multithreading to chip design 2010 http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-designSchranzhofer, A., Chen, J.-J., & Thiele, L. (2010). Dynamic Power-Aware Mapping of Applications onto Heterogeneous MPSoC Platforms. IEEE Transactions on Industrial Informatics, 6(4), 692-707. doi:10.1109/tii.2010.2062192Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., & Valero, M. (2006). Predictable performance in SMT processors: synergy between the OS and SMTs. IEEE Transactions on Computers, 55(7), 785-799. doi:10.1109/tc.2006.108Fisher, N., & Baruah, S. (2008). The feasibility of general task systems with precedence constraints on multiprocessor platforms. Real-Time Systems, 41(1), 1-26. doi:10.1007/s11241-008-9054-5Buttazzo, G., Bini, E., & Yifan Wu. (2011). Partitioning Real-Time Applications Over Multicore Reservations. IEEE Transactions on Industrial Informatics, 7(2), 302-315. doi:10.1109/tii.2011.2123902Intel Pentium M processor datasheet INTEL Corp. Santa Clara, CA, USA 2004 http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdfChaparro, P., Gonzáles, J., Magklis, G., Cai, Q., & González, A. (2007). Understanding the Thermal Implications of Multi-Core Architectures. IEEE Transactions on Parallel and Distributed Systems, 18(8), 1055-1065. doi:10.1109/tpds.2007.1092WCET analysis project. WCET benchmark programs 2006 http://www.mrtc.mdh.se/projects/wcet

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto

    Towards Optimal Application Mapping for Energy-Efficient Many-Core Platforms

    Get PDF
    Siirretty Doriast

    Hybrid dynamic energy and thermal management in heterogeneous embedded multiprocessor SoCs

    Full text link

    A Dynamic Power-Aware Partitioner with Real-Time Task Migration for Embedded Multicore Processors

    Full text link
    [ES] Analizar el impacto de permitir que las tareas de tiempo real puedan migrar su ejecución de un core a otro, sobre el consumo en sistemas empotrados multicore.[EN] A major design issue in embedded systems is reducing the power consumption since batteries have a limited energy budget. For this purpose, several techniques such as Dynamic Voltage and Frequency Scaling (DVFS) or task migration are being used. DVFS circuitry allows reducing power by selecting the optimal voltage supply, while task migration achieves this effect by balancing the workload among cores. This work focuses on power-aware scheduling allowing task migration to reduce energy consumption in multicore embedded systems implementing DVFS capabilities. To address energy savings, the devised schedulers follow two main rules: migrations are allowed at specific points of time and only one task is allowed to migrate each time. Two algorithms have been proposed working under real-time constraints. The simpler algorithm, namely, Single Option Migration (SOM) only checks one target core before performing a migration. In contrast, the Multiple Option Migration (MOM) searches the optimal target core. In general, the MOM algorithm achieves better energy savings than the SOM algorithm, although differences are wider for a reduced number of cores and frequency/voltage levels. Moreover, the MOM algorithm reduces energy consumption as much as 40% over the typical Worst Fit (WF) strategy.March Cabrelles, JL. (2012). A Dynamic Power-Aware Partitioner with Real-Time Task Migration for Embedded Multicore Processors. http://hdl.handle.net/10251/29847Archivo delegad

    Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments

    Full text link
    © 2015, Springer Science+Business Media New York. Optimizing task scheduling in a distributed heterogeneous computing environment, which is a nonlinear multi-objective NP-hard problem, plays a critical role in decreasing service response time and cost, and boosting Quality of Service (QoS). This paper, considers four conflicting objectives, namely minimizing task transfer time, task execution cost, power consumption, and task queue length, to develop a comprehensive multi-objective optimization model for task scheduling. This model reduces costs from both the customer and provider perspectives by considering execution and power cost. We evaluate our model by applying two multi-objective evolutionary algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic Algorithm (MOGA). To implement the proposed model, we extend the Cloudsim toolkit by using MOPSO and MOGA as its task scheduling algorithms which determine the optimal task arrangement among VMs. The simulation results show that the proposed multi-objective model finds optimal trade-off solutions amongst the four conflicting objectives, which significantly reduces the job response time and makespan. This model not only increases QoS but also decreases the cost to providers. From our experimentation results, we find that MOPSO is a faster and more accurate evolutionary algorithm than MOGA for solving such problems

    Energy-Efficient, Reliable and QoS-Aware Task Mapping on Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS) usually consist of a set of embedded systems (CPS nodes) connected through wireless communication, providing multiple functionalities that support different types of applications. During CPS deployment, application tasks are mapped on the CPS nodes with the objective of enhancing real-time performance, energy efficiency, and execution reliability. To satisfy these requirements, effective task mapping approaches should be designed based on different types of tasks, platforms, applications, and system requirements. In this paper, we provide a comprehensive survey regarding the task mapping methods in CPS
    corecore