13 research outputs found

    Reliable and efficient webserver management for task scheduling in edge-cloud platform

    Get PDF
    The development in the field of cloud webserver management for the execution of the workflow and meeting the quality-of-service (QoS) prerequisites in a distributed cloud environment has been a challenging task. Though, internet of things (IoT) of work presented for the scheduling of the workflow in a heterogeneous cloud environment. Moreover, the rapid development in the field of cloud computing like edge-cloud computing creates new methods to schedule the workflow in a heterogenous cloud environment to process different tasks like IoT, event-driven applications, and different network applications. The current methods used for workflow scheduling have failed to provide better trade-offs to meet reliable performance with minimal delay. In this paper, a novel web server resource management framework is presented namely the reliable and efficient webserver management (REWM) framework for the edge-cloud environment. The experiment is conducted on complex bioinformatic workflows; the result shows the significant reduction of cost and energy by the proposed REWM in comparison with standard webserver management methodology

    Hybrid scheduling algorithms in cloud computing: a review

    Get PDF
    Cloud computing is one of the emerging fields in computer science due to its several advancements like on-demand processing, resource sharing, and pay per use. There are several cloud computing issues like security, quality of service (QoS) management, data center energy consumption, and scaling. Scheduling is one of the several challenging problems in cloud computing, where several tasks need to be assigned to resources to optimize the quality of service parameters. Scheduling is a well-known NP-hard problem in cloud computing. This will require a suitable scheduling algorithm. Several heuristics and meta-heuristics algorithms were proposed for scheduling the user's task to the resources available in cloud computing in an optimal way. Hybrid scheduling algorithms have become popular in cloud computing. In this paper, we reviewed the hybrid algorithms, which are the combinations of two or more algorithms, used for scheduling in cloud computing. The basic idea behind the hybridization of the algorithm is to take useful features of the used algorithms. This article also classifies the hybrid algorithms and analyzes their objectives, quality of service (QoS) parameters, and future directions for hybrid scheduling algorithms

    A review on job scheduling technique in cloud computing and priority rule based intelligent framework

    Get PDF
    In recent years, the concept of cloud computing has been gaining traction to provide dynamically increasing access to shared computing resources (software and hardware) via the internet. It’s not secret that cloud computing’s ability to supply mission-critical services has made job scheduling a hot subject in the industry right now. Cloud resources may be wasted, or in-service performance may suffer because of under-utilization or over-utilization, respectively, due to poor scheduling. Various strategies from the literature are examined in this research in order to give procedures for the planning and performance of Job Scheduling techniques (JST) in cloud computing. To begin, we look at and tabulate the existing JST that is linked to cloud and grid computing. The present successes are then thoroughly reviewed, difficulties and flows are recognized, and intelligent solutions are devised to take advantage of the proposed taxonomy. To bridge the gaps between present investigations, this paper also seeks to provide readers with a conceptual framework, where we proposed an effective job scheduling technique in cloud computing. These findings are intended to provide academics and policymakers with information about the advantages of a more efficient cloud computing setup. In cloud computing, fair job scheduling is most important. We proposed a priority-based scheduling technique to ensure fair job scheduling. Finally, the open research questions raised in this article will create a path for the implementation of an effective job scheduling strateg

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto

    A new priority rule cloud scheduling technique that utilizes gaps to increase the efficiency of jobs distribution

    Get PDF
    In recent years, the concept of cloud computing has been gaining traction to provide dynamically increasing access to shared computing resources (software and hardware) via the internet. It’s no secret that cloud computing’s ability to supply mission-critical services has made job scheduling a hot subject in the industry right now. However, the efficient utilization of these cloud resources has been a challenge, often resulting in wastage or degraded service performance due to poor scheduling. To solve this issue, existing research has been focused on queue-based job scheduling techniques, where jobs are scheduled based on specific deadlines or job lengths. To overcome this challenge, numerous researchers have focused on improving existing Priority Rule (PR) cloud schedulers by developing dynamic scheduling algorithms, but they have fallen short of meeting user satisfaction, such as flowtime, makespan, and total tardiness. These are the limitations of the current implementation of existing Priority Rule (PR) schedulers, mainly caused by blocking made by jobs at the head of the queue. These limitations lead to the poor performance of cloud-based mobile applications and other cloud services. To address this issue, the main objective of this research is to improve the existing PR cloud schedulers by developing a new dynamic scheduling algorithm by manipulating the gaps in the cloud job schedule. In this thesis, first a Priority-Based Fair Scheduling (PBFS) algorithm has been introduced to schedule jobs so that jobs get access to the required resources at optimal times. Then, a backfilling strategy called Shortest Gap Priority-Based Fair Scheduling (SG-PBFS) is proposed that attempts to manipulate the gaps in the schedule of cloud jobs. Finally, the performance evaluation demonstrates that the proposed SG-PBFS algorithm outperforms SG-SJF, SG-LJF, SG-FCFS, SG-EDF, and SG-(MAX-MIN) in terms of flow time, makespan time, and total tardiness, which conclusively demonstrates its effectiveness. The experiment result shows that for 500 jobs, SG-PBFS flow time, makespan time, and tardiness time are 9%, 4%, and 7% less than PBFS gradually

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Multi-dependency and time based resource scheduling algorithm for scientific applications in cloud computing

    Get PDF
    Workflow scheduling is one of the significant issues for scientific applications among virtual machine migration, database management, security, performance, fault tolerance, server consolidation, etc. In this paper, existing time-based scheduling algorithms, such as first come first serve (FCFS), min–min, max–min, and minimum completion time (MCT), along with dependency-based scheduling algorithm MaxChild have been considered. These time-based scheduling algorithms only compare the burst time of tasks. Based on the burst time, these schedulers, schedule the sub-tasks of the application on suitable virtual machines according to the scheduling criteria. During this process, not much attention was given to the proper utilization of the resources. A novel dependency and time-based scheduling algorithm is proposed that considers the parent to child (P2C) node dependencies, child to parent node dependencies, and the time of different tasks in the workflows. The proposed P2C algorithm emphasizes proper utilization of the resources and overcomes the limitations of these time-based schedulers. The scientific applications, such as CyberShake, Montage, Epigenomics, Inspiral, and SIPHT, are represented in terms of the workflow. The tasks can be represented as the nodes, and relationships between the tasks can be represented as the dependencies in the workflows. All the results have been validated by using the simulation-based environment created with the help of the WorkflowSim simulator for the cloud environment. It has been observed that the proposed approach outperforms the mentioned time and dependency-based scheduling algorithms in terms of the total execution time by efficiently utilizing the resources.peer-reviewe

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables
    corecore