34,229 research outputs found

    Minimizing a real-time task set through Task Clustering

    Get PDF
    International audienceIn the industry, real-time systems are specified as a set of hundreds of functionalities with timing constraints. Implementing those functionalities as threads in a one-to-one relation is not realistic due to the overhead caused by the large number of threads. In this paper, we present task clustering, which aims at minimizing the number of threads while preserving the schedulability. We prove that our clustering problem is NP-Hard and describe a heuristic to tackle it. Our approach has been applied to fixed-task or fixed-job priority based scheduling policies as Deadline Monotonic (DM) or Earliest Deadline First (EDF)

    Evidence Transfer for Improving Clustering Tasks Using External Categorical Evidence

    Full text link
    In this paper we introduce evidence transfer for clustering, a deep learning method that can incrementally manipulate the latent representations of an autoencoder, according to external categorical evidence, in order to improve a clustering outcome. By evidence transfer we define the process by which the categorical outcome of an external, auxiliary task is exploited to improve a primary task, in this case representation learning for clustering. Our proposed method makes no assumptions regarding the categorical evidence presented, nor the structure of the latent space. We compare our method, against the baseline solution by performing k-means clustering before and after its deployment. Experiments with three different kinds of evidence show that our method effectively manipulates the latent representations when introduced with real corresponding evidence, while remaining robust when presented with low quality evidence
    corecore