139 research outputs found

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    Mitigating Colluding Attacks in Online Social Networks and Crowdsourcing Platforms

    Get PDF
    Online Social Networks (OSNs) have created new ways for people to communicate, and for companies to engage their customers -- with these new avenues for communication come new vulnerabilities that can be exploited by attackers. This dissertation aims to investigate two attack models: Identity Clone Attacks (ICA) and Reconnaissance Attacks (RA). During an ICA, attackers impersonate users in a network and attempt to infiltrate social circles and extract confidential information. In an RA, attackers gather information on a target\u27s resources, employees, and relationships with other entities over public venues such as OSNs and company websites. This was made easier for the RA to be efficient because well-known social networks, such as Facebook, have a policy to force people to use their real identities for their accounts. The goal of our research is to provide mechanisms to defend against colluding attackers in the presence of ICA and RA collusion attacks. In this work, we consider a scenario not addressed by previous works, wherein multiple attackers collude against the network, and propose defense mechanisms for such an attack. We take into account the asymmetric nature of social networks and include the case where colluders could add or modify some attributes of their clones. We also consider the case where attackers send few friend requests to uncover their targets. To detect fake reviews and uncovering colluders in crowdsourcing, we propose a semantic similarity measurement between reviews and a community detection algorithm to overcome the non-adversarial attack. ICA in a colluding attack may become stronger and more sophisticated than in a single attack. We introduce a token-based comparison and a friend list structure-matching approach, resulting in stronger identifiers even in the presence of attackers who could add or modify some attributes on the clone. We also propose a stronger RA collusion mechanism in which colluders build their own legitimacy by considering asymmetric relationships among users and, while having partial information of the networks, avoid recreating social circles around their targets. Finally, we propose a defense mechanism against colluding RA which uses the weakest person (e.g., the potential victim willing to accept friend requests) to reach their target

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed
    corecore