813 research outputs found

    Projected Estimators for Robust Semi-supervised Classification

    Get PDF
    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Using a projection of the supervised estimate onto a set of constraints imposed by the unlabeled data, we find we can safely improve over the supervised solution in terms of this quadratic loss. Unlike other approaches to semi-supervised learning, the procedure does not rely on assumptions that are not intrinsic to the classifier at hand. It is theoretically demonstrated that, measured on the labeled and unlabeled training data, this semi-supervised procedure never gives a lower quadratic loss than the supervised alternative. To our knowledge this is the first approach that offers such strong, albeit conservative, guarantees for improvement over the supervised solution. The characteristics of our approach are explicated using benchmark datasets to further understand the similarities and differences between the quadratic loss criterion used in the theoretical results and the classification accuracy often considered in practice.Comment: 13 pages, 2 figures, 1 tabl

    Discussion on the paper: Hypotheses testing by convex optimization by Goldenshluger, Juditsky and Nemirovski

    Full text link
    We briefly discuss some interesting questions related to the paper "Hypotheses testing by convex optimization" by Goldenshluger, Juditsky and Nemirovski.Comment: To appear in the EJ

    Residual Weighted Learning for Estimating Individualized Treatment Rules

    Full text link
    Personalized medicine has received increasing attention among statisticians, computer scientists, and clinical practitioners. A major component of personalized medicine is the estimation of individualized treatment rules (ITRs). Recently, Zhao et al. (2012) proposed outcome weighted learning (OWL) to construct ITRs that directly optimize the clinical outcome. Although OWL opens the door to introducing machine learning techniques to optimal treatment regimes, it still has some problems in performance. In this article, we propose a general framework, called Residual Weighted Learning (RWL), to improve finite sample performance. Unlike OWL which weights misclassification errors by clinical outcomes, RWL weights these errors by residuals of the outcome from a regression fit on clinical covariates excluding treatment assignment. We utilize the smoothed ramp loss function in RWL, and provide a difference of convex (d.c.) algorithm to solve the corresponding non-convex optimization problem. By estimating residuals with linear models or generalized linear models, RWL can effectively deal with different types of outcomes, such as continuous, binary and count outcomes. We also propose variable selection methods for linear and nonlinear rules, respectively, to further improve the performance. We show that the resulting estimator of the treatment rule is consistent. We further obtain a rate of convergence for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed RWL methods is illustrated in simulation studies and in an analysis of cystic fibrosis clinical trial data.Comment: 48 pages, 3 figure
    • …
    corecore