5,112 research outputs found

    Deadline constrained video analysis via in-transit computational environments

    Get PDF
    Combining edge processing (at data capture site) with analysis carried out while data is enroute from the capture site to a data center offers a variety of different processing models. Such in-transit nodes include network data centers that have generally been used to support content distribution (providing support for data multicast and caching), but have recently started to offer user-defined programmability, through Software Defined Networks (SDN) capability, e.g. OpenFlow and Network Function Visualization (NFV). We demonstrate how this multi-site computational capability can be aggregated to support video analytics, with Quality of Service and cost constraints (e.g. latency-bound analysis). The use of SDN technology enables separation of the data path from the control path, enabling in-network processing capabilities to be supported as data is migrated across the network. We propose to leverage SDN capability to gain control over the data transport service with the purpose of dynamically establishing data routes such that we can opportunistically exploit the latent computational capabilities located along the network path. Using a number of scenarios, we demonstrate the benefits and limitations of this approach for video analysis, comparing this with the baseline scenario of undertaking all such analysis at a data center located at the core of the infrastructure.TS

    System Abstractions for Scalable Application Development at the Edge

    Get PDF
    Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which collect or generate huge amounts of data. Given diverse device capabilities and application requirements, data processing takes place across a range of settings, from on-device to a nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been studied extensively from the perspectives of job placement, scheduling and joint optimization. Typical approaches focus on performance optimization for individual applications. This often requires domain knowledge of the applications, but also leads to application-specific solutions. Application development and deployment over diverse scenarios thus incur repetitive manual efforts. There are two overarching challenges to provide system-level support for application development at the edge. First, there is inherent heterogeneity at the device hardware level. The execution settings may range from a small cluster as an edge cloud to on-device inference on embedded devices, differing in hardware capability and programming environments. Further, application performance requirements vary significantly, making it even more difficult to map different applications to already heterogeneous hardware. Second, there are trends towards incorporating edge and cloud and multi-modal data. Together, these add further dimensions to the design space and increase the complexity significantly. In this thesis, we propose a novel framework to simplify application development and deployment over a continuum of edge to cloud. Our framework provides key connections between different dimensions of design considerations, corresponding to the application abstraction, data abstraction and resource management abstraction respectively. First, our framework masks hardware heterogeneity with abstract resource types through containerization, and abstracts away the application processing pipelines into generic flow graphs. Further, our framework further supports a notion of degradable computing for application scenarios at the edge that are driven by multimodal sensory input. Next, as video analytics is the killer app of edge computing, we include a generic data management service between video query systems and a video store to organize video data at the edge. We propose a video data unit abstraction based on a notion of distance between objects in the video, quantifying the semantic similarity among video data. Last, considering concurrent application execution, our framework supports multi-application offloading with device-centric control, with a userspace scheduler service that wraps over the operating system scheduler

    A Method for Providing High-volume Interprofessional Simulation Encounters in Physical and Occupational Therapy Education Programs

    Get PDF
    With an increasing emphasis on interprofessional education within the allied health professions, simulation has potential for being a useful teaching modality for providing collaborative learning experiences for occupational and physical therapist students. However, there are many challenges associated with conducting simulations with large numbers of students. We describe the design, planning, cost, and support staff time required for conducting an interprofessional simulation of the intensive care setting, including a methodology for maximizing resources and student opportunities for participation for 64 physical and occupational therapy students over a 4-hour time period. Qualitative analyses of student experiences are also presented

    Design And Analysis Of Scalable Video Streaming Systems

    Get PDF
    Despite the advancement in multimedia streaming technology, many multimedia applications are still face major challenges, including provision of Quality-of-Service (QoS), system scalability, limited resources, and cost. In this dissertation, we develop and analyze a new set of metrics based on two particular video streaming systems, namely: (1) Video-on-Demand (VOD) with video advertisements system and (2) Automated Video Surveillance System (AVS). We address the main issues in the design of commercial VOD systems: scalability and support of video advertisements. We develop a scalable delivery framework for streaming media content with video advertisements. The delivery framework combines the benefits of stream merging and periodic broadcasting. In addition, we propose new scheduling policies that are well-suited for the proposed delivery framework. We also propose a new prediction scheme of the ad viewing times, called Assign Closest Ad Completion Time (ACA). Moreover, we propose an enhanced business model, in which the revenue generated from advertisements is used to subsidize the price. Additionally, we investigate the support of targeted advertisements, whereby clients receive ads that are well-suited for their interests and needs. Furthermore, we provide the clients with the ability to select from multiple price options, each with an associate expected number of viewed ads. We provide detailed analysis of the proposed VOD system, considering realistic workload and a wide range of design parameters. In the second system, Automated Video Surveillance (AVS), we consider the system design for optimizing the subjects recognition probabilities. We focus on the management and the control of various Pan, Tilt, Zoom (PTZ) video cameras. In particular, we develop a camera management solution that provides the best tradeoff between the subject recognition probability and time complexity. We consider both subject grouping and clustering mechanisms. In subject grouping, we propose the Grid Based Grouping (GBG) and the Elevator Based P lanning (EBP) algorithms. In the clustering approach, we propose the (GBG) with Clustering (GBGC) and the EBP with Clustering (EBPC) algorithms. We characterize the impact of various factors on recognition probability. These factors include resolution, pose and zoom-distance noise. We provide detailed analysis of the camera management solution, considering realistic workload and system design parameters
    • …
    corecore