197 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์ธ IoT ์ŠคํŠธ๋ฆผ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์—”๋“œ-ํˆฌ-์—”๋“œ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021.8. ์—„ํƒœ๊ฑด.As a large amount of data streams are generated from Internet of Things (IoT) devices, two types of IoT stream queries are deployed in the cloud. One is a small IoT-stream query, which continuously processes a few IoT data streams of end-usersโ€™s IoT devices that have low input rates (e.g., one event per second). The other one is a big IoT-stream query, which is deployed by data scientists to continuously process a large number and huge amount of aggregated data streams that can suddenly fluctuate in a short period of time (bursty loads). However, existing work and stream systems fall short of handling such workloads efficiently because their query submission, compilation, execution, and resource acquisition layer are not optimized for the workloads. This dissertation proposes two end-to-end optimization techniquesโ€” not only optimizing stream query execution layer (runtime), but also optimizing query submission, compiler, or resource acquisition layer. First, to minimize the number of cloud machines and maintenance cost of servers in processing many small IoT queries, we build Pluto, a new stream processing system that optimizes both query submission and execution layer for efficiently handling many small IoT stream queries. By decoupling IoT query submission and its code registration and offering new APIs, Pluto mitigates the bottleneck in query submission and enables efficient resource sharing across small IoT stream queries in the execution. Second, to quickly handle sudden bursty loads and scale out big IoT stream queries, we build Sponge, which is a new stream system that optimizes query compilation, execution, and resource acquisition layer altogether. For fast acquisition of new resources, Sponge uses a new cloud computing service, called Lambda, because it offers fast-to-start lightweight containers. Sponge then converts the streaming dataflow of big stream queries to overcome Lambdaโ€™s resource constraint and to minimize scaling overheads at runtime. Our evaluations show that the end-to-end optimization techniques significantly improve system throughput and latency compared to existing stream systems in handling a large number of small IoT stream queries and in handling bursty loads of big IoT stream queries.๋‹ค์–‘ํ•œ IoT ๋””๋ฐ”์ด์Šค๋กœ๋ถ€ํ„ฐ ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ๋“ค์ด ์ƒ์„ฑ๋˜๋ฉด์„œ, ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํƒ€์ž…์˜ ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ๊ฐ€ ํด๋ผ์šฐ๋“œ์—์„œ ์ˆ˜ํ–‰๋œ๋‹ค. ์ฒซ์งธ๋กœ๋Š” ์ž‘์€-IoT ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ์ด๋ฉฐ, ํ•˜๋‚˜์˜ ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ๊ฐ€ ์ ์€ ์–‘์˜ IoT ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์„ ์ฒ˜๋ฆฌํ•˜๊ณ  ๋งŽ์€ ์ˆ˜์˜ ์ž‘์€ ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ๋“ค์ด ์กด์žฌํ•œ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ๋Š” ํฐ-IoT ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ์ด๋ฉฐ, ํ•˜๋‚˜ ์˜ ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ๊ฐ€ ๋งŽ์€ ์–‘์˜, ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” IoT ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ๋“ค์„ ์ฒ˜๋ฆฌํ•œ๋‹ค. ํ•˜์ง€๋งŒ, ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ŠคํŠธ๋ฆผ ์‹œ์Šคํ…œ์—์„œ๋Š” ์ฟผ๋ฆฌ ์ˆ˜ํ–‰, ์ œ์ถœ, ์ปดํŒŒ์ผ๋Ÿฌ, ๋ฐ ๋ฆฌ์†Œ์Šค ํ™•๋ณด ๋ ˆ์ด์–ด๊ฐ€ ์ด๋Ÿฌํ•œ ์›Œํฌ๋กœ๋“œ์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€ ์•Š์•„์„œ ์ž‘์€-IoT ๋ฐ ํฐ-IoT ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ž‘์€-IoT ๋ฐ ํฐ-IoT ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ ์›Œํฌ๋กœ๋“œ๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์—”๋“œ-ํˆฌ-์—”๋“œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ๋งŽ์€ ์ˆ˜์˜ ์ž‘์€-IoT ์ŠคํŠธ๋ฆผ ์ฟผ ๋ฆฌ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด, ์ฟผ๋ฆฌ ์ œ์ถœ๊ณผ ์ˆ˜ํ–‰ ๋ ˆ์ด์–ด๋ฅผ ์ตœ์ ํ™” ํ•˜๋Š” ๊ธฐ๋ฒ•์ธ IoT ํŠน์„ฑ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ฟผ๋ฆฌ ์ œ์ถœ๊ณผ ์ฝ”๋“œ ๋“ฑ๋ก์„ ๋ถ„๋ฆฌํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด API๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ฟผ๋ฆฌ ์ œ์ถœ์—์„œ์˜ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ด๊ณ  ์ฟผ๋ฆฌ ์ˆ˜ํ–‰์—์„œ IoT ํŠน ์„ฑ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฆฌ์†Œ์Šค๋ฅผ ๊ณต์œ ํ•จ์œผ๋กœ์จ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ธ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ํฐ-IoT ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ์—์„œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ๋กœ๋“œ๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด, ์ฟผ๋ฆฌ ์ปดํŒŒ์ผ๋Ÿฌ, ์ˆ˜ํ–‰, ๋ฐ ๋ฆฌ์†Œ์Šค ํ™•๋ณด ๋ ˆ์ด์–ด ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ƒˆ๋กœ์šด ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ๋ฆฌ์†Œ์Šค์ธ ๋žŒ๋‹ค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋น ๋ฅด๊ฒŒ ๋ฆฌ์†Œ์Šค๋ฅผ ํ™•๋ณดํ•˜๊ณ , ๋žŒ๋‹ค์˜ ์ œํ•œ๋œ ๋ฆฌ์†Œ์Šค์—์„œ ์Šค์ผ€์ผ-์•„์›ƒ ์˜ค ๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ŠคํŠธ๋ฆผ ๋ฐ์ดํ„ฐํ”Œ๋กœ์šฐ๋ฅผ ๋ฐ”๊ฟˆ์œผ๋กœ์จ ํฐ-IoT ์ŠคํŠธ๋ฆผ ์ฟผ๋ฆฌ์˜ ์ž‘์—…๋Ÿ‰์„ ๋น ๋ฅด๊ฒŒ ๋žŒ๋‹ค๋กœ ์˜ฎ๊ธด๋‹ค. ์ตœ์ ํ™” ๊ธฐ๋ฒ•์˜ ํšจ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘๊ฐ€์ง€ ์‹œ์Šคํ…œ-Pluto ์™€ Sponge-์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด์„œ, ๊ฐ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ ๊ธฐ์กด ์‹œ์Šคํ…œ ๋Œ€๋น„ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œ์ผฐ์œผ๋ฉฐ, ์ง€์—ฐ์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 IoT Stream Workloads 1 1.1.1 Small IoT Stream Query 2 1.1.2 Big IoT Stream Query 4 1.2 Proposed Solution 5 1.2.1 IoT-Aware Three-Phase Query Execution 6 1.2.2 Streaming Dataflow Reshaping on Lambda 7 1.3 Contribution 8 1.4 Dissertation Structure 9 Chapter 2 Background 10 2.1 Stream Query Model 10 2.2 Workload Characteristics 12 2.2.1 Small IoT Stream Query 12 2.2.2 Big IoT Stream Query 13 Chapter 3 IoT-Aware Three-Phase Query Execution 15 3.1 Pluto Design Overview 16 3.2 Decoupling of Code and Query Submission 19 3.2.1 Code Registration 19 3.2.2 Query Submission API 20 3.3 IoT-Aware Execution Model 21 3.3.1 Q-Group Creation and Query Grouping 24 3.3.2 Q-Group Assignment 24 3.3.3 Q-Group Scheduling and Processing 25 3.3.4 Load Rebalancing: Q-Group Split and Merging 28 3.4 Implementation 29 3.5 Evaluation 30 3.5.1 Methodology 30 3.5.2 Performance Comparison 34 3.5.3 Performance Breakdown 36 3.5.4 Load Rebalancing: Q-Group Split and Merging 38 3.5.5 Tradeoff 40 3.6 Discussion 41 3.7 Related Work 43 3.8 Summary 44 Chapter 4 Streaming Dataflow Reshaping for Fast Scaling Mechanism on Lambda 46 4.1 Motivation 46 4.2 Challenges 47 4.3 Design Overview 50 4.4 Reshaping Rules 51 4.4.1 R1:Inserting Router Operators 52 4.4.2 R2:Inserting Transient Operators 54 4.4.3 R3:Inserting State Merger Operators 57 4.5 Scaling Protocol 59 4.5.1 Redirection Protocol 59 4.5.2 Merging Protocol 60 4.5.3 Migration Protocol 61 4.6 Implementation 61 4.7 Evaluation 63 4.7.1 Methodology 63 4.7.2 Performance Analysis 68 4.7.3 Performance Breakdown 70 4.7.4 Latency-Cost($) Trade-Off 76 4.8 Discussion 77 4.9 Related Work 78 4.10 Summary 80 Chapter 5 Conclusion 81๋ฐ•

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates
    • โ€ฆ
    corecore