43,666 research outputs found

    The Complexity of Mean Flow Time Scheduling Problems with Release Times

    Full text link
    We study the problem of preemptive scheduling n jobs with given release times on m identical parallel machines. The objective is to minimize the average flow time. We show that when all jobs have equal processing times then the problem can be solved in polynomial time using linear programming. Our algorithm can also be applied to the open-shop problem with release times and unit processing times. For the general case (when processing times are arbitrary), we show that the problem is unary NP-hard.Comment: Subsumes and replaces cs.DS/0412094 and "Complexity of mean flow time scheduling problems with release dates" by P.B, S.

    How Unsplittable-Flow-Covering helps Scheduling with Job-Dependent Cost Functions

    Full text link
    Generalizing many well-known and natural scheduling problems, scheduling with job-specific cost functions has gained a lot of attention recently. In this setting, each job incurs a cost depending on its completion time, given by a private cost function, and one seeks to schedule the jobs to minimize the total sum of these costs. The framework captures many important scheduling objectives such as weighted flow time or weighted tardiness. Still, the general case as well as the mentioned special cases are far from being very well understood yet, even for only one machine. Aiming for better general understanding of this problem, in this paper we focus on the case of uniform job release dates on one machine for which the state of the art is a 4-approximation algorithm. This is true even for a special case that is equivalent to the covering version of the well-studied and prominent unsplittable flow on a path problem, which is interesting in its own right. For that covering problem, we present a quasi-polynomial time (1+ϵ)(1+\epsilon)-approximation algorithm that yields an (e+ϵ)(e+\epsilon)-approximation for the above scheduling problem. Moreover, for the latter we devise the best possible resource augmentation result regarding speed: a polynomial time algorithm which computes a solution with \emph{optimal }cost at 1+ϵ1+\epsilon speedup. Finally, we present an elegant QPTAS for the special case where the cost functions of the jobs fall into at most logn\log n many classes. This algorithm allows the jobs even to have up to logn\log n many distinct release dates.Comment: 2 pages, 1 figur

    Permutation Flowshop Scheduling with Earliness and Tardiness Penalties

    Get PDF
    We address the permutation flowshop scheduling problem with earliness and tardiness penalties (E/T) and common due date of jobs. Large number of process and discrete parts industries follow flowshop type of production process. There are very few results reported for multi-machine E/T scheduling problems. We show that the problem can be sub-divided into three groups- one, where the due date is such that all jobs are necessarily tardy; the second, where the due date is such that it is not tight enough to act as a constraint on scheduling decision; and the third is a group of problems where the due date is in between the above two. We develop analytical results and heuristics for problems arising in each of these three classes. Computational results of the heuristics are reported. Most of the problems in this research are addressed for the first time in the literature. For problems with existing heuristics, the heuristic solution is found to perform better than the existing results.
    corecore