10,911 research outputs found

    Security Matters: A Survey on Adversarial Machine Learning

    Full text link
    Adversarial machine learning is a fast growing research area, which considers the scenarios when machine learning systems may face potential adversarial attackers, who intentionally synthesize input data to make a well-trained model to make mistake. It always involves a defending side, usually a classifier, and an attacking side that aims to cause incorrect output. The earliest studies on the adversarial examples for machine learning algorithms start from the information security area, which considers a much wider varieties of attacking methods. But recent research focus that popularized by the deep learning community places strong emphasis on how the "imperceivable" perturbations on the normal inputs may cause dramatic mistakes by the deep learning with supposed super-human accuracy. This paper serves to give a comprehensive introduction to a range of aspects of the adversarial deep learning topic, including its foundations, typical attacking and defending strategies, and some extended studies

    Distributed Detection in Tree Topologies with Byzantines

    Full text link
    In this paper, we consider the problem of distributed detection in tree topologies in the presence of Byzantines. The expression for minimum attacking power required by the Byzantines to blind the fusion center (FC) is obtained. More specifically, we show that when more than a certain fraction of individual node decisions are falsified, the decision fusion scheme becomes completely incapable. We obtain closed form expressions for the optimal attacking strategies that minimize the detection error exponent at the FC. We also look at the possible counter-measures from the FC's perspective to protect the network from these Byzantines. We formulate the robust topology design problem as a bi-level program and provide an efficient algorithm to solve it. We also provide some numerical results to gain insights into the solution

    Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource Constraints

    Full text link
    To launch black-box attacks against a Deep Neural Network (DNN) based Face Recognition (FR) system, one needs to build \textit{substitute} models to simulate the target model, so the adversarial examples discovered from substitute models could also mislead the target model. Such \textit{transferability} is achieved in recent studies through querying the target model to obtain data for training the substitute models. A real-world target, likes the FR system of law enforcement, however, is less accessible to the adversary. To attack such a system, a substitute model with similar quality as the target model is needed to identify their common defects. This is hard since the adversary often does not have the enough resources to train such a powerful model (hundreds of millions of images and rooms of GPUs are needed to train a commercial FR system). We found in our research, however, that a resource-constrained adversary could still effectively approximate the target model's capability to recognize \textit{specific} individuals, by training \textit{biased} substitute models on additional images of those victims whose identities the attacker want to cover or impersonate. This is made possible by a new property we discovered, called \textit{Nearly Local Linearity} (NLL), which models the observation that an ideal DNN model produces the image representations (embeddings) whose distances among themselves truthfully describe the human perception of the differences among the input images. By simulating this property around the victim's images, we significantly improve the transferability of black-box impersonation attacks by nearly 50\%. Particularly, we successfully attacked a commercial system trained over 20 million images, using 4 million images and 1/5 of the training time but achieving 62\% transferability in an impersonation attack and 89\% in a dodging attack

    Towards Query Efficient Black-box Attacks: An Input-free Perspective

    Full text link
    Recent studies have highlighted that deep neural networks (DNNs) are vulnerable to adversarial attacks, even in a black-box scenario. However, most of the existing black-box attack algorithms need to make a huge amount of queries to perform attacks, which is not practical in the real world. We note one of the main reasons for the massive queries is that the adversarial example is required to be visually similar to the original image, but in many cases, how adversarial examples look like does not matter much. It inspires us to introduce a new attack called \emph{input-free} attack, under which an adversary can choose an arbitrary image to start with and is allowed to add perceptible perturbations on it. Following this approach, we propose two techniques to significantly reduce the query complexity. First, we initialize an adversarial example with a gray color image on which every pixel has roughly the same importance for the target model. Then we shrink the dimension of the attack space by perturbing a small region and tiling it to cover the input image. To make our algorithm more effective, we stabilize a projected gradient ascent algorithm with momentum, and also propose a heuristic approach for region size selection. Through extensive experiments, we show that with only 1,701 queries on average, we can perturb a gray image to any target class of ImageNet with a 100\% success rate on InceptionV3. Besides, our algorithm has successfully defeated two real-world systems, the Clarifai food detection API and the Baidu Animal Identification API.Comment: Accepted by 11th ACM Workshop on Artificial Intelligence and Security (AISec) with the 25th ACM Conference on Computer and Communications Security (CCS

    Distributed Submodular Minimization And Motion Coordination Over Discrete State Space

    Full text link
    We develop a framework for the distributed minimization of submodular functions. Submodular functions are a discrete analog of convex functions and are extensively used in large-scale combinatorial optimization problems. While there has been significant interest in the distributed formulations of convex optimization problems, distributed minimization of submodular functions has received relatively little research attention. Our framework relies on an equivalent convex reformulation of a submodular minimization problem, which is efficiently computable. We then use this relaxation to exploit methods for the distributed optimization of convex functions. The proposed framework is applicable to submodular set functions as well as to a wider class of submodular functions defined over certain lattices. We also propose an approach for solving distributed motion coordination problems in discrete state space based on submodular function minimization. We establish through a challenging setup of capture the flag game that submodular functions over lattices can be used to design artificial potential fields over discrete state space in which the agents are attracted towards their goals and are repulsed from obstacles and from each other for collision avoidance

    Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models

    Full text link
    The vulnerability of deep networks to adversarial attacks is a central problem for deep learning from the perspective of both cognition and security. The current most successful defense method is to train a classifier using adversarial images created during learning. Another defense approach involves transformation or purification of the original input to remove adversarial signals before the image is classified. We focus on defending naturally-trained classifiers using Markov Chain Monte Carlo (MCMC) sampling with an Energy-Based Model (EBM) for adversarial purification. In contrast to adversarial training, our approach is intended to secure pre-existing and highly vulnerable classifiers. The memoryless behavior of long-run MCMC sampling will eventually remove adversarial signals, while metastable behavior preserves consistent appearance of MCMC samples after many steps to allow accurate long-run prediction. Balancing these factors can lead to effective purification and robust classification. We evaluate adversarial defense with an EBM using the strongest known attacks against purification. Our contributions are 1) an improved method for training EBM's with realistic long-run MCMC samples, 2) an Expectation-Over-Transformation (EOT) defense that resolves theoretical ambiguities for stochastic defenses and from which the EOT attack naturally follows, and 3) state-of-the-art adversarial defense for naturally-trained classifiers and competitive defense compared to adversarially-trained classifiers on Cifar-10, SVHN, and Cifar-100. Code and pre-trained models are available at https://github.com/point0bar1/ebm-defense.Comment: ICLR 202

    Securing Edge Networks with Securebox

    Full text link
    The number of mobile and IoT devices connected to home and enterprise networks is growing fast. These devices offer new services and experiences for the users; however, they also present new classes of security threats pertaining to data and device safety and user privacy. In this article, we first analyze the potential threats presented by these devices connected to edge networks. We then propose Securebox: a new cloud-driven, low cost Security-as-a-Service solution that applies Software-Defined Networking (SDN) to improve network monitoring, security and management. Securebox enables remote management of networks through a cloud security service (CSS) with minimal user intervention required. To reduce costs and improve the scalability, Securebox is based on virtualized middleboxes provided by CSS. Our proposal differs from the existing solutions by integrating the SDN and cloud into a unified edge security solution, and by offering a collaborative protection mechanism that enables rapid security policy dissemination across all connected networks in mitigating new threats or attacks detected by the system. We have implemented two Securebox prototypes, using a low-cost Raspberry-PI and off-the-shelf fanless PC. Our system evaluation has shown that Securebox can achieve automatic network security and be deployed incrementally to the infrastructure with low management overhead

    Simple Black-box Adversarial Attacks

    Full text link
    We propose an intriguingly simple method for the construction of adversarial images in the black-box setting. In constrast to the white-box scenario, constructing black-box adversarial images has the additional constraint on query budget, and efficient attacks remain an open problem to date. With only the mild assumption of continuous-valued confidence scores, our highly query-efficient algorithm utilizes the following simple iterative principle: we randomly sample a vector from a predefined orthonormal basis and either add or subtract it to the target image. Despite its simplicity, the proposed method can be used for both untargeted and targeted attacks -- resulting in previously unprecedented query efficiency in both settings. We demonstrate the efficacy and efficiency of our algorithm on several real world settings including the Google Cloud Vision API. We argue that our proposed algorithm should serve as a strong baseline for future black-box attacks, in particular because it is extremely fast and its implementation requires less than 20 lines of PyTorch code.Comment: Published at ICML 201

    Low Frequency Adversarial Perturbation

    Full text link
    Adversarial images aim to change a target model's decision by minimally perturbing a target image. In the black-box setting, the absence of gradient information often renders this search problem costly in terms of query complexity. In this paper we propose to restrict the search for adversarial images to a low frequency domain. This approach is readily compatible with many existing black-box attack frameworks and consistently reduces their query cost by 2 to 4 times. Further, we can circumvent image transformation defenses even when both the model and the defense strategy are unknown. Finally, we demonstrate the efficacy of this technique by fooling the Google Cloud Vision platform with an unprecedented low number of model queries.Comment: 9 pages, 9 figures. Accepted to UAI 201

    Query-Efficient Black-Box Attack Against Sequence-Based Malware Classifiers

    Full text link
    In this paper, we present a generic, query-efficient black-box attack against API call-based machine learning malware classifiers. We generate adversarial examples by modifying the malware's API call sequences and non-sequential features (printable strings), and these adversarial examples will be misclassified by the target malware classifier without affecting the malware's functionality. In contrast to previous studies, our attack minimizes the number of malware classifier queries required. In addition, in our attack, the attacker must only know the class predicted by the malware classifier; attacker knowledge of the malware classifier's confidence score is optional. We evaluate the attack effectiveness when attacks are performed against a variety of malware classifier architectures, including recurrent neural network (RNN) variants, deep neural networks, support vector machines, and gradient boosted decision trees. Our attack success rate is around 98% when the classifier's confidence score is known and 64% when just the classifier's predicted class is known. We implement four state-of-the-art query-efficient attacks and show that our attack requires fewer queries and less knowledge about the attacked model's architecture than other existing query-efficient attacks, making it practical for attacking cloud-based malware classifiers at a minimal cost.Comment: Accepted as a conference paper at ACSAC 202
    • …
    corecore