347 research outputs found

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Reliable Provisioning of Spot Instances for Compute-intensive Applications

    Full text link
    Cloud computing providers are now offering their unused resources for leasing in the spot market, which has been considered the first step towards a full-fledged market economy for computational resources. Spot instances are virtual machines (VMs) available at lower prices than their standard on-demand counterparts. These VMs will run for as long as the current price is lower than the maximum bid price users are willing to pay per hour. Spot instances have been increasingly used for executing compute-intensive applications. In spite of an apparent economical advantage, due to an intermittent nature of biddable resources, application execution times may be prolonged or they may not finish at all. This paper proposes a resource allocation strategy that addresses the problem of running compute-intensive jobs on a pool of intermittent virtual machines, while also aiming to run applications in a fast and economical way. To mitigate potential unavailability periods, a multifaceted fault-aware resource provisioning policy is proposed. Our solution employs price and runtime estimation mechanisms, as well as three fault tolerance techniques, namely checkpointing, task duplication and migration. We evaluate our strategies using trace-driven simulations, which take as input real price variation traces, as well as an application trace from the Parallel Workload Archive. Our results demonstrate the effectiveness of executing applications on spot instances, respecting QoS constraints, despite occasional failures.Comment: 8 pages, 4 figure

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads

    Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds

    Full text link
    [EN] To meet the dynamic workload requirements in widespread task-batch based workflow applications, it is important to design algorithms for DAG-based platforms (such as Dryad, Spark and Pegasus) to rent virtual machines from public clouds dynamically. In terms of depths and functionalities, tasks of different task-batches are merged into task-units. A unit-aware deadline division method is investigated for properly dividing workflow deadlines to task deadlines so as to minimize the utilization of rented intervals. A rule-based task scheduling method is presented for allocating tasks to time slots of rented Virtual Machines (VMs) with a task right shifting operation and a weighted priority composite rule. A Unit-aware Rule-based Heuristic (URH) is proposed for elastically provisioning VMs to task-batch based workflows to minimize the rental cost in DAG-based cloud platforms. Effectiveness of the proposed URH methods is verified by comparing them against two adapted existing algorithms for similar problems on some realistic workflows.The authors would like to thank the reviewers for their constructive and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No.61602243 and 61572127), the Natural Science Foundation of Jiangsu Province (Grant No.BK20160846), the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Grant No. 30916014107). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD" (DPI2015-65895-R) financed by FEDER funds.Cai, Z.; Li, X.; Ruiz García, R. (2019). Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds. IEEE Transactions on Cloud Computing. 7(3):814-826. https://doi.org/10.1109/TCC.2017.2663426S8148267

    Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments

    Get PDF
    This chapter presents software architectures of the big data processing platforms. It will provide an in-depth knowledge on resource management techniques involved while deploying big data processing systems on cloud environment. It starts from the very basics and gradually introduce the core components of resource management which we have divided in multiple layers. It covers the state-of-art practices and researches done in SLA-based resource management with a specific focus on the job scheduling mechanisms.Comment: 27 pages, 9 figure

    Cost-Effective Resource Provisioning for MapReduce in a Cloud

    Get PDF
    This paper presents a new MapReduce cloud service model, Cura, for provisioning cost-effective MapReduce services in a cloud. In contrast to existing MapReduce cloud services such as a generic compute cloud or a dedicated MapReduce cloud, Cura has a number of unique benefits. First, Cura is designed to provide a cost-effective solution to efficiently handle MapReduce production workloads that have a significant amount of interactive jobs. Second, unlike existing services that require customers to decide the resources to be used for the jobs, Cura leverages MapReduce profiling to automatically create the best cluster configuration for the jobs. While the existing models allow only a per-job resource optimization for the jobs, Cura implements a globally efficient resource allocation scheme that significantly reduces the resource usage cost in the cloud. Third, Cura leverages unique optimization opportunities when dealing with workloads that can withstand some slack. By effectively multiplexing the available cloud resources among the jobs based on the job requirements, Cura achieves significantly lower resource usage costs for the jobs. Cura's core resource management schemes include cost-aware resource provisioning, VM-aware scheduling and online virtual machine reconfiguration. Our experimental results using Facebook-like workload traces show that our techniques lead to more than 80 percent reduction in the cloud compute infrastructure cost with upto 65 percent reduction in job response times
    corecore