3,631 research outputs found

    Optimal Status Updating with a Finite-Battery Energy Harvesting Source

    Full text link
    We consider an energy harvesting source equipped with a finite battery, which needs to send timely status updates to a remote destination. The timeliness of status updates is measured by a non-decreasing penalty function of the Age of Information (AoI). The problem is to find a policy for generating updates that achieves the lowest possible time-average expected age penalty among all online policies. We prove that one optimal solution of this problem is a monotone threshold policy, which satisfies (i) each new update is sent out only when the age is higher than a threshold and (ii) the threshold is a non-increasing function of the instantaneous battery level. Let Ï„B\tau_B denote the optimal threshold corresponding to the full battery level BB, and p(â‹…)p(\cdot) denote the age-penalty function, then we can show that p(Ï„B)p(\tau_B) is equal to the optimum objective value, i.e., the minimum achievable time-average expected age penalty. These structural properties are used to develop an algorithm to compute the optimal thresholds. Our numerical analysis indicates that the improvement in average age with added battery capacity is largest at small battery sizes; specifically, more than half the total possible reduction in age is attained when battery storage increases from one transmission's worth of energy to two. This encourages further study of status update policies for sensors with small battery storage.Comment: 15 pages, 6 figure

    Optimizing Information Freshness in a Multiple Access Channel with Heterogeneous Devices

    Full text link
    In this work, we study age-optimal scheduling with stability constraints in a multiple access channel with two heterogeneous source nodes transmitting to a common destination. The first node is connected to a power grid and it has randomly arriving data packets. Another energy harvesting (EH) sensor monitors a stochastic process and sends status updates to the destination. We formulate an optimization problem that aims at minimizing the average age of information (AoI) of the EH node subject to the queue stability condition of the grid-connected node. First, we consider a Probabilistic Random Access (PRA) policy where both nodes make independent transmission decisions based on some fixed probability distributions. We show that with this policy, the average AoI is equal to the average peak AoI, if the EH node only sends freshly generated samples. In addition, we derive the optimal solution in closed form, which reveals some interesting properties of the considered system. Furthermore, we consider a Drift-Plus-Penalty (DPP) policy and develop AoI-optimal and peak-AoI-optimal scheduling algorithms using the Lyapunov optimization theory. Simulation results show that the DPP policy outperforms the PRA policy in various scenarios, especially when the destination node has low multi-packet reception capabilities.Comment: 13 pages, 8 figures, accepted for publication in IEEE Open Journal of the Communications Societ

    Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission

    Get PDF
    Energy harvesting (EH) provides a means of greatly enhancing the lifetime of wireless sensor nodes. However, the randomness inherent in the EH process may cause significant delay for performing sensing operation and transmitting the sensed information to the sink. Unlike most existing studies on the delay performance of EH sensor networks, where only the energy consumption of transmission is considered, we consider the energy costs of both sensing and transmission. Specifically, we consider an EH sensor that monitors some status environmental property and adopts a harvest-then-use protocol to perform sensing and transmission. To comprehensively study the delay performance, we consider two complementary metrics and analytically derive their statistics: (i) update age - measuring the time taken from when information is obtained by the sensor to when the sensed information is successfully transmitted to the sink, i.e., how timely the updated information at the sink is, and (ii) update cycle - measuring the time duration between two consecutive successful transmissions, i.e., how frequently the information at the sink is updated. Our results show that the consideration of sensing energy cost leads to an important tradeoff between the two metrics: more frequent updates result in less timely information available at the sink.Comment: submitted for possible journal publicatio
    • …
    corecore