203 research outputs found

    Torque-Controlled Stepping-Strategy Push Recovery: Design and Implementation on the iCub Humanoid Robot

    Full text link
    One of the challenges for the robotics community is to deploy robots which can reliably operate in real world scenarios together with humans. A crucial requirement for legged robots is the capability to properly balance on their feet, rejecting external disturbances. iCub is a state-of-the-art humanoid robot which has only recently started to balance on its feet. While the current balancing controller has proved successful in various scenarios, it still misses the capability to properly react to strong pushes by taking steps. This paper goes in this direction. It proposes and implements a control strategy based on the Capture Point concept [1]. Instead of relying on position control, like most of Capture Point related approaches, the proposed strategy generates references for the momentum-based torque controller already implemented on the iCub, thus extending its capabilities to react to external disturbances, while retaining the advantages of torque control when interacting with the environment. Experiments in the Gazebo simulator and on the iCub humanoid robot validate the proposed strategy

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie

    Offline and Online Planning and Control Strategies for the Multi-Contact and Biped Locomotion of Humanoid Robots

    Get PDF
    In the past decades, the Research on humanoid robots made progress forward accomplishing exceptionally dynamic and agile motions. Starting from the DARPA Robotic Challenge in 2015, humanoid platforms have been successfully employed to perform more and more challenging tasks with the eventual aim of assisting or replacing humans in hazardous and stressful working situations. However, the deployment of these complex machines in realistic domestic and working environments still represents a high-level challenge for robotics. Such environments are characterized by unstructured and cluttered settings with continuously varying conditions due to the dynamic presence of humans and other mobile entities, which cannot only compromise the operation of the robotic system but can also pose severe risks both to the people and the robot itself due to unexpected interactions and impacts. The ability to react to these unexpected interactions is therefore a paramount requirement for enabling the robot to adapt its behavior to the task needs and the characteristics of the environment. Further, the capability to move in a complex and varying environment is an essential skill for a humanoid robot for the execution of any task. Indeed, human instructions may often require the robot to move and reach a desired location, e.g., for bringing an object or for inspecting a specific place of an infrastructure. In this context, a flexible and autonomous walking behavior is an essential skill, study of which represents one of the main topics of this Thesis, considering disturbances and unfeasibilities coming both from the environment and dynamic obstacles that populate realistic scenarios.  Locomotion planning strategies are still an open theme in the humanoids and legged robots research and can be classified in sample-based and optimization-based planning algorithms. The first, explore the configuration space, finding a feasible path between the start and goal robot’s configuration with different logic depending on the algorithm. They suffer of a high computational cost that often makes difficult, if not impossible, their online implementations but, compared to their counterparts, they do not need any environment or robot simplification to find a solution and they are probabilistic complete, meaning that a feasible solution can be certainly found if at least one exists. The goal of this thesis is to merge the two algorithms in a coupled offline-online planning framework to generate an offline global trajectory with a sample-based approach to cope with any kind of cluttered and complex environment, and online locally refine it during the execution, using a faster optimization-based algorithm that more suits an online implementation. The offline planner performances are improved by planning in the robot contact space instead of the whole-body robot configuration space, requiring an algorithm that maps the two state spaces.   The framework proposes a methodology to generate whole-body trajectories for the motion of humanoid and legged robots in realistic and dynamically changing environments.  This thesis focuses on the design and test of each component of this planning framework, whose validation is carried out on the real robotic platforms CENTAURO and COMAN+ in various loco-manipulation tasks scenarios. &nbsp

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    Keep Rollin' - Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots

    Full text link
    We show dynamic locomotion strategies for wheeled quadrupedal robots, which combine the advantages of both walking and driving. The developed optimization framework tightly integrates the additional degrees of freedom introduced by the wheels. Our approach relies on a zero-moment point based motion optimization which continuously updates reference trajectories. The reference motions are tracked by a hierarchical whole-body controller which computes optimal generalized accelerations and contact forces by solving a sequence of prioritized tasks including the nonholonomic rolling constraints. Our approach has been tested on ANYmal, a quadrupedal robot that is fully torque-controlled including the non-steerable wheels attached to its legs. We conducted experiments on flat and inclined terrains as well as over steps, whereby we show that integrating the wheels into the motion control and planning framework results in intuitive motion trajectories, which enable more robust and dynamic locomotion compared to other wheeled-legged robots. Moreover, with a speed of 4 m/s and a reduction of the cost of transport by 83 % we prove the superiority of wheeled-legged robots compared to their legged counterparts.Comment: IEEE Robotics and Automation Letter

    Generating whole body movements for dynamics anthropomorphic systems under constraints

    Get PDF
    Cette thèse étudie la question de la génération de mouvements corps-complet pour des systèmes anthropomorphes. Elle considère le problème de la modélisation et de la commande en abordant la question difficile de la génération de mouvements ressemblant à ceux de l'homme. En premier lieu, un modèle dynamique du robot humanoïde HRP-2 est élaboré à partir de l'algorithme récursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schéma de commande dynamique est ensuite développé, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coûts et calculant les couples de commande en satisfaisant des contraintes d'égalité et d'inégalité. La cascade de problèmes quadratiques est définie par une pile de tâches associée à un ordre de priorité. Nous proposons ensuite une formulation unifiée des contraintes de contacts planaires et nous montrons que la méthode proposée permet de prendre en compte plusieurs contacts non coplanaires et généralise la contrainte usuelle du ZMP dans le cas où seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de génération de mouvement issus de la robotique aux outils de capture du mouvement humain en développant une méthode originale de génération de mouvement visant à imiter le mouvement humain. Cette méthode est basée sur le recalage des données capturées et l'édition du mouvement en utilisant le solveur hiérarchique précédemment introduit et la définition de tâches et de contraintes dynamiques. Cette méthode originale permet d'ajuster un mouvement humain capturé pour le reproduire fidèlement sur un humanoïde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent à ceux de l'homme, nous développons un modèle anthropomorphe ayant un nombre de degrés de liberté supérieur à celui du robot humanoïde HRP2. Le solveur générique est utilisé pour simuler le mouvement sur ce nouveau modèle. Une série de tâches est définie pour décrire un scénario joué par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modèle dynamique permet d'accroitre naturellement le réalisme du mouvement.This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements

    Methods to improve the coping capacities of whole-body controllers for humanoid robots

    Get PDF
    Current applications for humanoid robotics require autonomy in an environment specifically adapted to humans, and safe coexistence with people. Whole-body control is promising in this sense, having shown to successfully achieve locomotion and manipulation tasks. However, robustness remains an issue: whole-body controllers can still hardly cope with unexpected disturbances, with changes in working conditions, or with performing a variety of tasks, without human intervention. In this thesis, we explore how whole-body control approaches can be designed to address these issues. Based on whole-body control, contributions have been developed along three main axes: joint limit avoidance, automatic parameter tuning, and generalizing whole-body motions achieved by a controller. We first establish a whole-body torque-controller for the iCub, based on the stack-of-tasks approach and proposed feedback control laws in SE(3). From there, we develop a novel, theoretically guaranteed joint limit avoidance technique for torque-control, through a parametrization of the feasible joint space. This technique allows the robot to remain compliant, while resisting external perturbations that push joints closer to their limits, as demonstrated with experiments in simulation and with the real robot. Then, we focus on the issue of automatically tuning parameters of the controller, in order to improve its behavior across different situations. We show that our approach for learning task priorities, combining domain randomization and carefully selected fitness functions, allows the successful transfer of results between platforms subjected to different working conditions. Following these results, we then propose a controller which allows for generic, complex whole-body motions through real-time teleoperation. This approach is notably verified on the robot to follow generic movements of the teleoperator while in double support, as well as to follow the teleoperator\u2019s upper-body movements while walking with footsteps adapted from the teleoperator\u2019s footsteps. The approaches proposed in this thesis therefore improve the capability of whole-body controllers to cope with external disturbances, different working conditions and generic whole-body motions
    • …
    corecore