57 research outputs found

    Towards prevention of sportsmen burnout : Formal analysis of sub-optimal tournament scheduling

    Get PDF
    Funding Statement: The authors are grateful to the Deanship of Scientific Research at King Saud University, Saudi Arabia for funding this work through the Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing.Peer reviewedPublisher PD

    Format and schedule proposals for a FIFA World Cup with 12 four-team groups

    Get PDF
    After the expansion of the FIFA World Cup from 32 to 48 teams starting from the 2026 edition, the initial proposal was to split the 48 national teams into 16 groups of three. Among other drawbacks, this proposal provides potential for collusion. Recently, after widespread criticism, FIFA officials signaled the possibility to re-discuss that proposal, pointing to a tournament with 12 groups of four teams. If this new proposal prevails, relevant questions arise about tournament design and schedule. In this paper, we propose tournament formats for a World Cup with 12 groups of four teams, considering a number of criteria, such as non-collusion, symmetry in rest days, no dead rubbers, and a tournament length of about one month. At the same time, our proposals attempt to adhere to the traditional format, with some nuances either in the group stage or in the knockout stage

    Handling fairness issues in time-relaxed tournaments with availability constraints

    Get PDF
    Sports timetables determine who will play against whom, where, and on which time slot. In contrast to time-constrained sports timetables, time-relaxed timetables utilize (many) more time slots than there are games per team. This offers time-relaxed timetables additional flexibility to take into account venue availability constraints, stating that a team can only play at home when its venue is available, and player availability constraints stating that a team can only play when its players are available. Despite their flexibility, time-relaxed timetables have the drawback that the rest period between teams’ consecutive games can vary considerably, and the difference in the number of games played at any point in the season can become large. Besides, it can be important to timetable home and away games alternately. In this paper, we first establish the computational complexity of time-relaxed timetabling with availability constraints. Naturally, when one also incorporates fairness objectives on top of availability, the problem becomes even more challenging. We present two heuristics that can handle these fairness objectives. First, we propose an adaptive large neighborhood method that repeatedly destroys and repairs a timetable. Second, we propose a memetic algorithm that makes use of local search to schedule or reschedule all home games of a team. For numerous artificial and real-life instances, these heuristics generate high-quality timetables using considerably less computational resources compared to integer programming models solved using a state-of-the-art solver

    A quest for a fair schedule

    Get PDF

    Mathematical models for rescheduling Ecuador's 2020 professional football league season disrupted by COVID-19

    Get PDF
    The year 2020 saw the world turned upside down by the coronavirus pandemic. Countless human activities were suspended or cancelled as the virus spread across the globe. In this paper, we show how the regular season matches of Ecuador’s professional football league were rescheduled due to the disruption caused by the pandemic. As with many others, this league had to reschedule its remaining games to fit within in a much shorter period of time than originally planned. To address this problem, we developed two mathematical models that designed new match calendars. The first one, a round assignment model, rescheduled the various rounds in the season still to be played while the second one, a day assignment model, took the solutions of the first model as input to assign the matches within each round to specific days. The implementation of our models secured a well-balanced number of days off before each match across all of the teams. Also, it enabled the league to conclude a full season without cancelling any matches or changing the schedule format, unlike what occurred in many other leagues, and won the approval of all stakeholders including league officials, players, team coaches, the TV broadcaster and fans

    Achieving broad access to satellite control research with zero robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This thesis was scanned as part of an electronic thesis pilot project.Cataloged from PDF version of thesis.Includes bibliographical references (p. 307-313).Since operations began in 2006, the SPHERES facility, including three satellites aboard the International Space Station (ISS), has demonstrated many future satellite technologies in a true microgravity environment and established a model for developing successful ISS payloads. In 2009, the Zero Robotics program began with the goal of leveraging the resources of SPHERES as a tool for Science, Technology, Engineering, and Math education through a unique student robotics competition. Since the first iteration with two teams, the program has grown over four years into an international tournament involving more than two thousand student competitors and has given hundreds of students the experience of running experiments on the ISS. Zero Robotics tournaments involve an annually updated challenge motivated by a space theme and designed to match the hardware constraints of the SPHERES facility. The tournament proceeds in several phases of increasing difficulty, including a multi-week collaboration period where geographically separated teams work together through the provided tools to write software for SPHERES. Students initially compete in a virtual, online simulation environment, then transition to hardware for the final live championship round aboard the ISS. Along the way, the online platform ensures compatibility with the satellite hardware and provides feedback in the form of 3D simulation animations. During each competition phase, a continuous scoring system allows competitors to incrementally explore new strategies while striving for a seat in the championship. This thesis will present the design of the Zero Robotics competition and supporting online environment and tools that enable users from around the world to successfully write computer programs for satellites. The central contribution is a framework for building virtual platforms that serve as surrogates for limited availability hardware facilities. The framework includes the elaboration of the core principles behind the design of Zero Robotics along with examples and lessons from the implementation of the competition. The virtual platform concept is further extended with a web-based architecture for writing, compiling, simulating, and analyzing programs for a dynamic robot. A standalone and key enabling component of the architecture is a pattern for building fast, high fidelity, web-based simulations. For control of the robots, an easy to use programming interface for controlling 6 degree-of-freedom (6DOF) satellites is presented, along with a lightweight supervisory control law to prevent collisions between satellites without user action. This work also contributes a new form of student robotics competition, including the unique features of model-based online simulation, programming, 6DOF dynamics, a multi-week team collaboration phase, and the chance to test satellites aboard the ISS. Scoring during the competition is made possible by possible by a game-agnostic scoring algorithm, which has been demonstrated during a tournament season and improved for responsiveness. Lastly, future directions are suggested for improving the tournament including a detailed initial exploration of creating open-ended Monte Carlo analysis tools.by Jacob G. Katz.Ph.D

    Evaluating and Improving Image Quality of Tiled Displays

    Get PDF
    Tiled displays are created by grouping multiple displays together to form one very large display. These tiled displays are often the only suitable option for displaying very large images but suffer from a grid distortion caused by gaps between each sub-display’s active region. This grid distortion is fundamentally different from other, well-studied, image distortions (e.g., blur, noise, compression) and the impact of these grid distortions has thus far not been studied. This research addresses this lack of attention by investigating the grid distortion’s quality impact and creating perceptual algorithms to reduce this impact. We measure the quality impact of the grid distortion by creating two new image quality assessment (IQA) databases for tiled images. These databases provide significant insight into the unique characteristics of the grid distortion and provide a baseline against which to measure the performance of current IQA metrics. We use these databases to show that current metrics do not adequately reflect the quality impact of the grid distortions, and we create a new metric specifically for tiled images that statistically (with 95% confidence) outperforms current metrics. We improve perceived tiled display image quality by creating new image-correction algorithms based on elements of the human visual system (HVS). These correction techniques modify the perceived quality of the displayed images without directly modifying the static grid distortion. These algorithms are shown, through the use of a third subjective user study, to clearly and consistently improve the perceived quality of tiled images.1 yea

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore