843 research outputs found

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Multi-objective enhanced memetic algorithm for green job shop scheduling with uncertain times

    Get PDF
    The quest for sustainability has arrived to the manufacturing world, with the emergence of a research field known as green scheduling. Traditional performance objectives now co-exist with energy-saving ones. In this work, we tackle a job shop scheduling problem with the double goal of minimising energy consumption during machine idle time and minimising the project’s makespan. We also consider uncertainty in processing times, modelled with fuzzy numbers. We present a multi-objective optimisation model of the problem and we propose a new enhanced memetic algorithm that combines a multiobjective evolutionary algorithm with three procedures that exploit the problem-specific available knowledge. Experimental results validate the proposed method with respect to hypervolume, -indicator and empirical attaintment functions

    Proactive, dynamic and multi-criteria scheduling of maintenance activities.

    No full text
    International audienceIn maintenance services skills management is directly linked to the performance of the service. A good human resource management will have an effect on the performance of the plant. Each task which has to be performed is characterised by the level of competence required. For each skill, human resources have different levels. The issue of making a decision about assignment and scheduling leads to finding the best resource and the correct time to perform the task. The solve this problem, managers have to take into account the different criteria such as the number of late tasks, the workload or the disturbance when inserting a new task into an existing planning. As there is a lot of estimated data, the managers also have to anticipate these uncertainties. To solve this multi-criteria problem, we propose a dynamic approach based on the kangaroo methodology. To deal with uncertainties, estimated data is modelled with fuzzy logic. This approach then offers the maintenance expert a choice between a set of the most robust possibilities

    Genetic programming for manufacturing optimisation.

    Get PDF
    A considerable number of optimisation techniques have been proposed for the solution of problems associated with the manufacturing process. Evolutionary computation methods, a group of non-deterministic search algorithms that employ the concept of Darwinian strife for survival to guide the search for optimal solutions, have been extensively used for this purpose. Genetic programming is an evolutionary algorithm that evolves variable-length solution representations in the form of computer programs. While genetic programming has produced successful applications in a variety of optimisation fields, genetic programming methodologies for the solution of manufacturing optimisation problems have rarely been reported. The applicability of genetic programming in the field of manufacturing optimisation is investigated in this thesis. Three well-known problems were used for this purpose: the one-machine total tardiness problem, the cell-formation problem and the multiobjective process planning selection problem. The main contribution of this thesis is the introduction of novel genetic programming frameworks for the solution of these problems. In the case of the one-machine total tardiness problem genetic programming employed combinations of dispatching rules for the indirect representation of job schedules. The hybridisation of genetic programming with alternative search algorithms was proposed for the solution of more difficult problem instances. In addition, genetic programming was used for the evolution of new dispatching rules that challenged the efficiency of man-made dispatching rules for the solution of the problem. An integrated genetic programming - hierarchical clustering approach was proposed for the solution of simple and advanced formulations of the cell-formation problem. The proposed framework produced competitive results to alternative methodologies that have been proposed for the solution of the same problem. The evolution of similarity coefficients that can be used in combination with clustering techniques for the solution of cell-formation problems was also investigated. Finally, genetic programming was combined with a number of evolutionary multiobjective techniques for the solution of the multiobjective process planning selection problem. Results on test problems illustrated the ability of the proposed methodology to provide a wealth of potential solutions to the decision-maker

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    Energy-aware coordination of machine scheduling and support device recharging in production systems

    Get PDF
    Electricity generation from renewable energy sources is crucial for achieving climate targets, including greenhouse gas neutrality. Germany has made significant progress in increasing renewable energy generation. However, feed-in management actions have led to losses of renewable electricity in the past years, primarily from wind energy. These actions aim to maintain grid stability but result in excess renewable energy that goes unused. The lost electricity could have powered a multitude of households and saved CO2 emissions. Moreover, feed-in management actions incurred compensation claims of around 807 million Euros in 2021. Wind-abundant regions like Schleswig-Holstein are particularly affected by these actions, resulting in substantial losses of renewable electricity production. Expanding the power grid infrastructure is a costly and time-consuming solution to avoid feed-in management actions. An alternative approach is to increase local electricity consumption during peak renewable generation periods, which can help balance electricity supply and demand and reduce feed-in management actions. The dissertation focuses on energy-aware manufacturing decision-making, exploring ways to counteract feed-in management actions by increasing local industrial consumption during renewable generation peaks. The research proposes to guide production management decisions, synchronizing a company's energy consumption profile with renewable energy availability for more environmentally friendly production and improved grid stability

    Solutions to decision-making problems in management engineering using molecular computational algorithms and experimentations

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č3368ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2011/5/23 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新568
    • 

    corecore