38 research outputs found

    Multiple-input Multiple-output Radar Waveform Design Methodologies

    Get PDF
    Multiple-input multiple-output (MIMO) radar is currently an active area of research. The MIMO techniques have been well studied for communications applications where they offer benefits in multipath fading environments. Partly inspired by these benefits, MIMO techniques are applied to radar and they offer a number of advantages such as improved resolution and sensitivity. It allows the use of transmitting multiple simultaneous waveforms from different phase centers. The employed radar waveform plays a key role in determining the accuracy, resolution, and ambiguity in performing tasks such as determining the target range, velocity, shape, and so on. The excellent performance promised by MIMO radar can be unleashed only by proper waveform design. In this article, a survey on MIMO radar waveform design is presented. The goal of this paper is to elucidate the key concepts of waveform design to encourage further research on this emerging technology.Defence Science Journal, 2013, 63(4), pp.393-401, DOI:http://dx.doi.org/10.14429/dsj.63.253

    Sequential detection methods for spread-spectrum code acquisition

    Get PDF

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    The Bi-directional Spatial Spectrum for MIMO Radar and Its Applications

    Get PDF
    <p>Radar systems have long applied electronically-steered phased arrays to discriminate returns in azimuth angle and elevation angle. On receiver arrays, beamforming is performed after reception of the data, allowing for many adaptive array processing algorithms to be employed. However, on transmitter arrays, up until recently pre-determined phase shifts had to applied to each transmitter element before transmission, precluding adaptive transmit array processing schemes. Recent advances in multiple-input multiple-output radar techniques have allowed for transmitter channels to separated after data reception, allowing for virtual non-causal "after-the-fact" transmit beamforming. The ability to discriminate in both direction-of-arrival and direction-of-departure allows for the novel ability to discriminate line-of-sight returns from multipath returns. This works extends the concept of virtual non-causal transmit beamforming to the broader concept of a bi-directional spatial spectrum, and describes application of such a spectrum to applications such as spread-Doppler multipath clutter mitigation in ground-vehicle radar, and calibration of a receiver array of a MIMO system with ground clutter only. Additionally, for this work, a low-power MIMO radar testbed was developed for lab testing of MIMO radar concepts.</p>Dissertatio

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Aeronautical engineering: A continuing bibliography with indexes (supplement 250)

    Get PDF
    This bibliography lists 420 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore