14,677 research outputs found

    DEA Problems under Geometrical or Probability Uncertainties of Sample Data

    Get PDF
    This paper discusses the theoretical and practical aspects of new methods for solving DEA problems under real-life geometrical uncertainty and probability uncertainty of sample data. The proposed minimax approach to solve problems with geometrical uncertainty of sample data involves an implementation of linear programming or minimax optimization, whereas the problems with probability uncertainty of sample data are solved through implementing of econometric and new stochastic optimization methods, using the stochastic frontier functions estimation.DEA, Sample data uncertainty, Linear programming, Minimax optimization, Stochastic optimization, Stochastic frontier functions

    Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons

    Full text link
    Consider the standard Gaussian linear regression model Y=Xθ+ϵY=X\theta+\epsilon, where YRnY\in R^n is a response vector and XRnp X\in R^{n*p} is a design matrix. Numerous work have been devoted to building efficient estimators of θ\theta when pp is much larger than nn. In such a situation, a classical approach amounts to assume that θ0\theta_0 is approximately sparse. This paper studies the minimax risks of estimation and testing over classes of kk-sparse vectors θ\theta. These bounds shed light on the limitations due to high-dimensionality. The results encompass the problem of prediction (estimation of XθX\theta), the inverse problem (estimation of θ0\theta_0) and linear testing (testing Xθ=0X\theta=0). Interestingly, an elbow effect occurs when the number of variables klog(p/k)k\log(p/k) becomes large compared to nn. Indeed, the minimax risks and hypothesis separation distances blow up in this ultra-high dimensional setting. We also prove that even dimension reduction techniques cannot provide satisfying results in an ultra-high dimensional setting. Moreover, we compute the minimax risks when the variance of the noise is unknown. The knowledge of this variance is shown to play a significant role in the optimal rates of estimation and testing. All these minimax bounds provide a characterization of statistical problems that are so difficult so that no procedure can provide satisfying results

    Interval-Parameter Robust Minimax-regret Programming and Its Application to Energy and Environmental Systems Planning

    Get PDF
    In this study, an interval-parameter robust minimax-regret programming method is developed and applied to the planning of energy and environmental systems. Methods of robust programming, interval-parameter programming, and minimax-regret analysis are incorporated within a general optimization framework to enhance the robustness of the optimization effort. The interval-parameter robust minimax-regret programming can deal with uncertainties expressed as discrete intervals, fuzzy sets, and random variables. It can also be used for analyzing multiple scenarios associated with different system costs and risk levels. In its solution process, the fuzzy decision space is delimited into a more robust one through dimensional enlargement of the original fuzzy constraints; moreover, an interval-element cost matrix can be transformed into an interval-element regret matrix, such that the decision makers can identify desired alternatives based on the inexact minimax regret criterion. The developed method has been applied to a case study of energy and environmental systems planning under uncertainty. The results indicate that reasonable solutions have been generated

    Linear programming on the Stiefel manifold

    Full text link
    Linear programming on the Stiefel manifold (LPS) is studied for the first time. It aims at minimizing a linear objective function over the set of all pp-tuples of orthonormal vectors in Rn{\mathbb R}^n satisfying kk additional linear constraints. Despite the classical polynomial-time solvable case k=0k=0, general (LPS) is NP-hard. According to the Shapiro-Barvinok-Pataki theorem, (LPS) admits an exact semidefinite programming (SDP) relaxation when p(p+1)/2nkp(p+1)/2\le n-k, which is tight when p=1p=1. Surprisingly, we can greatly strengthen this sufficient exactness condition to pnkp\le n-k, which covers the classical case pnp\le n and k=0k=0. Regarding (LPS) as a smooth nonlinear programming problem, we reveal a nice property that under the linear independence constraint qualification, the standard first- and second-order {\it local} necessary optimality conditions are sufficient for {\it global} optimality when p+1nkp+1\le n-k

    Bayesian nonparametric multivariate convex regression

    Full text link
    In many applications, such as economics, operations research and reinforcement learning, one often needs to estimate a multivariate regression function f subject to a convexity constraint. For example, in sequential decision processes the value of a state under optimal subsequent decisions may be known to be convex or concave. We propose a new Bayesian nonparametric multivariate approach based on characterizing the unknown regression function as the max of a random collection of unknown hyperplanes. This specification induces a prior with large support in a Kullback-Leibler sense on the space of convex functions, while also leading to strong posterior consistency. Although we assume that f is defined over R^p, we show that this model has a convergence rate of log(n)^{-1} n^{-1/(d+2)} under the empirical L2 norm when f actually maps a d dimensional linear subspace to R. We design an efficient reversible jump MCMC algorithm for posterior computation and demonstrate the methods through application to value function approximation

    An Interactive Fuzzy Satisficing Method for Fuzzy Random Multiobjective 0-1 Programming Problems through Probability Maximization Using Possibility

    Get PDF
    In this paper, we focus on multiobjective 0-1 programming problems under the situation where stochastic uncertainty and vagueness exist at the same time. We formulate them as fuzzy random multiobjective 0-1 programming problems where coefficients of objective functions are fuzzy random variables. For the formulated problem, we propose an interactive fuzzy satisficing method through probability maximization using of possibility

    Recursive Concurrent Stochastic Games

    Get PDF
    We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent analysis of recursive simple stochastic games to a concurrent setting where the two players choose moves simultaneously and independently at each state. For multi-exit games, our earlier work already showed undecidability for basic questions like termination, thus we focus on the important case of single-exit RCSGs (1-RCSGs). We first characterize the value of a 1-RCSG termination game as the least fixed point solution of a system of nonlinear minimax functional equations, and use it to show PSPACE decidability for the quantitative termination problem. We then give a strategy improvement technique, which we use to show that player 1 (maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM) strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and generalize in a strong sense the randomized memoryless determinacy results for finite stochastic games, and extend the classic Hoffman-Karp strategy improvement approach from the finite to an infinite state setting. The proofs in our infinite-state setting are very different however, relying on subtle analytic properties of certain power series that arise from studying 1-RCSGs. We show that our upper bounds, even for qualitative (probability 1) termination, can not be improved, even to NP, without a major breakthrough, by giving two reductions: first a P-time reduction from the long-standing square-root sum problem to the quantitative termination decision problem for finite concurrent stochastic games, and then a P-time reduction from the latter problem to the qualitative termination problem for 1-RCSGs.Comment: 21 pages, 2 figure
    corecore