27 research outputs found

    From Pixels to Spikes: Efficient Multimodal Learning in the Presence of Domain Shift

    Get PDF
    Computer vision aims to provide computers with a conceptual understanding of images or video by learning a high-level representation. This representation is typically derived from the pixel domain (i.e., RGB channels) for tasks such as image classification or action recognition. In this thesis, we explore how RGB inputs can either be pre-processed or supplemented with other compressed visual modalities, in order to improve the accuracy-complexity tradeoff for various computer vision tasks. Beginning with RGB-domain data only, we propose a multi-level, Voronoi based spatial partitioning of images, which are individually processed by a convolutional neural network (CNN), to improve the scale invariance of the embedding. We combine this with a novel and efficient approach for optimal bit allocation within the quantized cell representations. We evaluate this proposal on the content-based image retrieval task, which constitutes finding similar images in a dataset to a given query. We then move to the more challenging domain of action recognition, where a video sequence is classified according to its constituent action. In this case, we demonstrate how the RGB modality can be supplemented with a flow modality, comprising motion vectors extracted directly from the video codec. The motion vectors (MVs) are used both as input to a CNN and as an activity sensor for providing selective macroblock (MB) decoding of RGB frames instead of full-frame decoding. We independently train two CNNs on RGB and MV correspondences and then fuse their scores during inference, demonstrating faster end-to-end processing and competitive classification accuracy to recent work. In order to explore the use of more efficient sensing modalities, we replace the MV stream with a neuromorphic vision sensing (NVS) stream for action recognition. NVS hardware mimics the biological retina and operates with substantially lower power and at significantly higher sampling rates than conventional active pixel sensing (APS) cameras. Due to the lack of training data in this domain, we generate emulated NVS frames directly from consecutive RGB frames and use these to train a teacher-student framework that additionally leverages on the abundance of optical flow training data. In the final part of this thesis, we introduce a novel unsupervised domain adaptation method for further minimizing the domain shift between emulated (source) and real (target) NVS data domains

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems

    Hyperspectral Data Acquisition and Its Application for Face Recognition

    Get PDF
    Current face recognition systems are rife with serious challenges in uncontrolled conditions: e.g., unrestrained lighting, pose variations, accessories, etc. Hyperspectral imaging (HI) is typically employed to counter many of those challenges, by incorporating the spectral information within different bands. Although numerous methods based on hyperspectral imaging have been developed for face recognition with promising results, three fundamental challenges remain: 1) low signal to noise ratios and low intensity values in the bands of the hyperspectral image specifically near blue bands; 2) high dimensionality of hyperspectral data; and 3) inter-band misalignment (IBM) correlated with subject motion during data acquisition. This dissertation concentrates mainly on addressing the aforementioned challenges in HI. First, to address low quality of the bands of the hyperspectral image, we utilize a custom light source that has more radiant power at shorter wavelengths and properly adjust camera exposure times corresponding to lower transmittance of the filter and lower radiant power of our light source. Second, the high dimensionality of spectral data imposes limitations on numerical analysis. As such, there is an emerging demand for robust data compression techniques with lows of less relevant information to manage real spectral data. To cope with these challenging problems, we describe a reduced-order data modeling technique based on local proper orthogonal decomposition in order to compute low-dimensional models by projecting high-dimensional clusters onto subspaces spanned by local reduced-order bases. Third, we investigate 11 leading alignment approaches to address IBM correlated with subject motion during data acquisition. To overcome the limitations of the considered alignment approaches, we propose an accurate alignment approach ( A3) by incorporating the strengths of point correspondence and a low-rank model. In addition, we develop two qualitative prediction models to assess the alignment quality of hyperspectral images in determining improved alignment among the conducted alignment approaches. Finally, we show that the proposed alignment approach leads to promising improvement on face recognition performance of a probabilistic linear discriminant analysis approach
    corecore