125 research outputs found

    New results on minimax regret single facility ordered median location problems on networks

    Get PDF
    We consider the single facility ordered median location problem with uncertainty in the parameters (weights) defining the objective function. We study two cases. In the first case the uncertain weights belong to a region with a finite number of extreme points, and in the second case they must also satisfy some order constraints and belong to some box, (convex case). To deal with the uncertainty we apply the minimax regret approach, providing strongly polynomial time algorithms to solve these problems

    Robust mean absolute deviation problems on networks with linear vertex weights

    Get PDF
    This article deals with incorporating the mean absolute deviation objective function in several robust single facility location models on networks with dynamic evolution of node weights, which are modeled by means of linear functions of a parameter. Specifically, we have considered two robustness criteria applied to the mean absolute deviation problem: the MinMax criterion, and the MinMax regret criterion. For solving the corresponding optimization problems, exact algorithms have been proposed and their complexities have been also analyzed.Ministerio de Ciencia e Innovación MTM2007-67433-C02-(01,02)Ministerio de Ciencia e Innovación MTM2009-14243Ministerio de Ciencia e Innovación MTM2010-19576-C02-(01,02)Ministerio de Ciencia e Innovación DE2009-0057Junta de Andalucía P09-TEP-5022Junta de Andalucía FQM-584

    A regret model applied to the maximum capture location problem

    Get PDF
    This article addresses issues related to location and allocation problems. Herein, we intend to demonstrate the influence of congestion, through the random number generation, of such systems in final solutions. An algorithm is presented which, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained with regard to its robustness for different scenarios. Taking as our point of departure the Maximum Capture Location Problem proposed by Church and Revelle [1, 26], an alternative perspective is added in which the choice behavior of the server does not depend only on the elapsed time from the demand point looking to the center, but includes also the service waiting time.N/

    A regret model applied to the facility location problem with limited capacity facilities

    Get PDF
    This article addresses issues related to location and allocation problems. Herein, we intend to demonstrate the influence of congestion, through the random number generation, of such systems in final solutions. An algorithm is presented which, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained with regard to its robustness for different scenarios. Taking as our point of departure the Facility Location Problem proposed by Balinski [27], an alternative perspective is added associating regret values to particular solutions.N/

    A regret model applied to the maximum coverage location problem with queue discipline

    Get PDF
    This article discusses issues related to the location and allocation problems where is intended to demonstrate, through the random number generation, the influence of congestion of such systems in the final solutions. It is presented an algorithm that, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained in regard to its robustness for different scenarios. To the well know Maximum Coverage Location Problem from Church and Revelle [1] an alternative perspective is added in which the choice behavior of the server does not only depend on the elapsed time from the demand point looking to the center, but also includes the waiting time for service conditioned by a waiting queue.N/

    An O(n^2 log^2 n) Time Algorithm for Minmax Regret Minsum Sink on Path Networks

    Get PDF
    We model evacuation in emergency situations by dynamic flow in a network. We want to minimize the aggregate evacuation time to an evacuation center (called a sink) on a path network with uniform edge capacities. The evacuees are initially located at the vertices, but their precise numbers are unknown, and are given by upper and lower bounds. Under this assumption, we compute a sink location that minimizes the maximum "regret." We present the first sub-cubic time algorithm in n to solve this problem, where n is the number of vertices. Although we cast our problem as evacuation, our result is accurate if the "evacuees" are fluid-like continuous material, but is a good approximation for discrete evacuees

    Qualitative Characteristics and Quantitative Measures of Solution's Reliability in Discrete Optimization: Traditional Analytical Approaches, Innovative Computational Methods and Applicability

    Get PDF
    The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.Siirretty Doriast
    corecore