211 research outputs found

    Wasserstein Distributionally Robust Control of Partially Observable Linear Systems: Tractable Approximation and Performance Guarantee

    Full text link
    Wasserstein distributionally robust control (WDRC) is an effective method for addressing inaccurate distribution information about disturbances in stochastic systems. It provides various salient features, such as an out-of-sample performance guarantee, while most of existing methods use full-state observations. In this paper, we develop a computationally tractable WDRC method for discrete-time partially observable linear-quadratic (LQ) control problems. The key idea is to reformulate the WDRC problem as a novel minimax control problem with an approximate Wasserstein penalty. We derive a closed-form expression of the optimal solution to the approximate problem using a nontrivial Riccati equation. We further show the guaranteed cost property of the resulting controller and identify a provable bound for the optimality gap. Finally, we evaluate the performance of our method through numerical experiments using both Gaussian and non-Gaussian disturbances

    Optimal Universal Controllers for Roll Stabilization

    Get PDF
    Roll stabilization is an important problem of ship motion control. This problem becomes especially difficult if the same set of actuators (e.g. a single rudder) has to be used for roll stabilization and heading control of the vessel, so that the roll stabilizing system interferes with the ship autopilot. Finding the "trade-off" between the concurrent goals of accurate vessel steering and roll stabilization usually reduces to an optimization problem, which has to be solved in presence of an unknown wave disturbance. Standard approaches to this problem (loop-shaping, LQG, H∞H_{\infty}-control etc.) require to know the spectral density of the disturbance, considered to be a \colored noise". In this paper, we propose a novel approach to optimal roll stabilization, approximating the disturbance by a polyharmonic signal with known frequencies yet uncertain amplitudes and phase shifts. Linear quadratic optimization problems in presence of polyharmonic disturbances can be solved by means of the theory of universal controllers developed by V.A. Yakubovich. An optimal universal controller delivers the optimal solution for any uncertain amplitudes and phases. Using Marine Systems Simulator (MSS) Toolbox that provides a realistic vessel's model, we compare our design method with classical approaches to optimal roll stabilization. Among three controllers providing the same quality of yaw steering, OUC stabilizes the roll motion most efficiently
    • …
    corecore