455 research outputs found

    Generalized SURE for Exponential Families: Applications to Regularization

    Full text link
    Stein's unbiased risk estimate (SURE) was proposed by Stein for the independent, identically distributed (iid) Gaussian model in order to derive estimates that dominate least-squares (LS). In recent years, the SURE criterion has been employed in a variety of denoising problems for choosing regularization parameters that minimize an estimate of the mean-squared error (MSE). However, its use has been limited to the iid case which precludes many important applications. In this paper we begin by deriving a SURE counterpart for general, not necessarily iid distributions from the exponential family. This enables extending the SURE design technique to a much broader class of problems. Based on this generalization we suggest a new method for choosing regularization parameters in penalized LS estimators. We then demonstrate its superior performance over the conventional generalized cross validation approach and the discrepancy method in the context of image deblurring and deconvolution. The SURE technique can also be used to design estimates without predefining their structure. However, allowing for too many free parameters impairs the performance of the resulting estimates. To address this inherent tradeoff we propose a regularized SURE objective. Based on this design criterion, we derive a wavelet denoising strategy that is similar in sprit to the standard soft-threshold approach but can lead to improved MSE performance.Comment: to appear in the IEEE Transactions on Signal Processin

    Nonparametric estimation by convex programming

    Full text link
    The problem we concentrate on is as follows: given (1) a convex compact set XX in Rn{\mathbb{R}}^n, an affine mapping x↦A(x)x\mapsto A(x), a parametric family {pμ(⋅)}\{p_{\mu}(\cdot)\} of probability densities and (2) NN i.i.d. observations of the random variable ω\omega, distributed with the density pA(x)(⋅)p_{A(x)}(\cdot) for some (unknown) x∈Xx\in X, estimate the value gTxg^Tx of a given linear form at xx. For several families {pμ(⋅)}\{p_{\mu}(\cdot)\} with no additional assumptions on XX and AA, we develop computationally efficient estimation routines which are minimax optimal, within an absolute constant factor. We then apply these routines to recovering xx itself in the Euclidean norm.Comment: Published in at http://dx.doi.org/10.1214/08-AOS654 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore