29 research outputs found

    Space-Time Transmit-Receive Design for Colocated MIMO Radar

    Get PDF
    This chapter deals with the design of multiple input multiple-output (MIMO) radar space-time transmit code (STTC) and space-time receive filter (STRF) to enhance moving targets detection in the presence of signal-dependent interferences, where we assume that some knowledge of target and clutter statistics are available for MIMO radar system according to a cognitive paradigm by using a site-specific (possible dynamic) environment database. Thus, an iterative sequential optimization algorithm with ensuring the convergence is proposed to maximize the signal to interference plus noise ratio (SINR) under the similarity and constant modulus constraints on the probing waveform. In particular, each iteration of the proposed algorithm requires to solve the hidden convex problems. The computational complexity is linear with the number of iterations and polynomial with the sizes of the STTW and the STRF. Finally, the gain and the computation time of the proposed algorithm also compared with the available methods are evaluated

    Transmit Waveform Optimization for Spatial-Frequency Diversity MIMO Radar in the Presence of Clutter

    Get PDF
    Benefitting from the independent target echoes of diversity channels, diversity MIMO radar can efficiently improve system performance, such as target detection and parameter estimation. Due to the fact that the RCS (radar cross section) of complex target may vary with the different transmitted carrier frequencies and array geometries, many recent researches study at the background of diversity MIMO radar equipped with widely separated array antennas or working at multiple carrier frequencies, respectively. In this paper, a new MIMO radar system combining the spatial and frequency diversities is investigated in the presence of signal-dependent clutter, which is called spatial-frequency diversity MIMO radar. With the prior information of target and clutter, a new method for joint optimization of transmitted waveforms and receiving filters is proposed to enhance the target detection ability of spatial-frequency diversity MIMO radar. Inspired by the MIMO communication system, the water-filling algorithm is introduced into the transmitted energy allocation problem for each carrier frequency channel. Simulation results show that the proposed system has a better performance in output signal-to-clutter-noise ratio (SCNR) compared to conventional diversity MIMO radar system

    Active and Passive Multi-Sensor Radar Imaging Techniques Exploiting Spatial Diversity

    Get PDF
    The work here presented reports several innovative SAR and ISAR radar imaging techniques exploiting the spatial diversity offered by multi-sensor systems in order to improve the performance with respect to the conventional, single channel cases. Both the cases of dedicated transmitters and exploitation of opportunity transmitters are considered

    Adaptive beamforming and switching in smart antenna systems

    Get PDF
    The ever increasing requirement for providing large bandwidth and seamless data access to commuters has prompted new challenges to wireless solution providers. The communication channel characteristics between mobile clients and base station change rapidly with the increasing traveling speed of vehicles. Smart antenna systems with adaptive beamforming and switching technology is the key component to tackle the challenges. As a spatial filter, beamformer has long been widely used in wireless communication, radar, acoustics, medical imaging systems to enhance the received signal from a particular looking direction while suppressing noise and interference from other directions. The adaptive beamforming algorithm provides the capability to track the varying nature of the communication channel characteristics. However, the conventional adaptive beamformer assumes that the Direction of Arrival (DOA) of the signal of interest changes slowly, although the interference direction could be changed dynamically. The proliferation of High Speed Rail (HSR) and seamless wireless communication between infrastructure ( roadside, trackside equipment) and the vehicles (train, car, boat etc.) brings a unique challenge for adaptive beamforming due to its rapid change of DOA. For a HSR train with 250km/h, the DOA change speed can be up to 4⁰ per millisecond. To address these unique challenges, faster algorithms to calculate the beamforming weight based on the rapid-changing DOA are needed. In this dissertation, two strategies are adopted to address the challenges. The first one is to improve the weight calculation speed. The second strategy is to improve the speed of DOA estimation for the impinging signal by leveraging on the predefined constrained route for the transportation market. Based on these concepts, various algorithms in beampattern generation and adaptive weight control are evaluated and investigated in this thesis. The well known Generalized Sidelobe Cancellation (GSC) architecture is adopted in this dissertation. But it faces serious signal cancellation problem when the estimated DOA deviates from the actual DOA which is severe in high mobility scenarios as in the transportation market. Algorithms to improve various parts of the GSC are proposed in this dissertation. Firstly, a Cyclic Variable Step Size (CVSS) algorithm for adjusting the Least Mean Square (LMS) step size with simplicity for implementation is proposed and evaluated. Secondly, a Kalman filter based solution to fuse different sensor information for a faster estimation and tracking of the DOA is investigated and proposed. Thirdly, to address the DOA mismatch issue caused by the rapid DOA change, a fast blocking matrix generation algorithm named Simplifized Zero Placement Algorithm (SZPA) is proposed to mitigate the signal cancellation in GSC. Fourthly, to make the beam pattern robust against DOA mismatch, a fast algorithm for the generation of at beam pattern named Zero Placement Flat Top (ZPFT) for the fixed beamforming path in GSC is proposed. Finally, to evaluate the effectiveness and performance of the beamforming algorithms, wireless channel simulation is needed. One of the challenging aspects for wireless simulation is the coupling between Probability Density Function (PDF) and Power Spectral Density (PSD) for a random variable. In this regard, a simplified solution to simulate Non Gaussian wireless channel is proposed, proved and evaluated for the effectiveness of the algorithm. With the above optimizations, the controlled simulation shows that the at top beampattern can be generated 380 times faster than iterative optimization method and blocking matrix can be generated 9 times faster than normal SVD method while the same overall optimum state performance can be achieved

    Cognitive Radar Detection in Nonstationary Environments and Target Tracking

    Get PDF
    Target detection and tracking are the most fundamental and important problems in a wide variety of defense and civilian radar systems. In recent years, to cope with complex environments and stealthy targets, the concept of cognitive radars has been proposed to integrate intelligent modules into conventional radar systems. To achieve better performance, cognitive radars are designed to sense, learn from, and adapt to environments. In this dissertation, we introduce cognitive radars for target detection in nonstationary environments and cognitive radar networks for target tracking.For target detection, many algorithms in the literature assume a stationary environment (clutter). However, in practical scenarios, changes in the nonstationary environment can perturb the parameters of the clutter distribution or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which can rapidly recognize the nonstationarity, accurately learn the new characteristics of the environment, and adaptively update the detector. To achieve this cognition, we propose a unifying framework that integrates three functions: (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by using kernel density estimation (KDE) methods and similarity measures (iii) adaptive target detection by automatically modifying the likelihood-ratio test and the corresponding detection threshold. We also conduct extensive numerical experiments to show the merits of the proposed method compared to a nonadaptive case, an adaptive matched filter (AMF) method, and the clairvoyant case.For target tracking, with remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. Accordingly, we propose a general framework for single target tracking in cognitive networks of radars, including joint consideration of waveform design, path planning, and radar selection. We formulate the tracking procedure using the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE). This procedure includes two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, we use an illustrative example to introduce a specific scenario in 2-D space. Simulation results based on this scenario demonstrate that the proposed framework can accurately track the target under the management of a network of radars
    corecore