8,481 research outputs found

    A Separation Theorem for Expected Value and Feared Value Discrete Time Control

    Get PDF
    We show how the use of a parallel between the ordinary (+,×)(+, \times) and the (max,+)(\max, +) algebras, Maslov measures that exploit this parallel, and more specifically their specialization to probabilities and the corresponding {\em cost measures} of Quadrat, offer a completely parallel treatment of stochastic and minimax control of disturbed nonlinear discrete time systems with partial information. This paper is based upon, and improves, the discrete time part of the earlier paper \cite{ber95}

    A non-autonomous stochastic discrete time system with uniform disturbances

    Full text link
    The main objective of this article is to present Bayesian optimal control over a class of non-autonomous linear stochastic discrete time systems with disturbances belonging to a family of the one parameter uniform distributions. It is proved that the Bayes control for the Pareto priors is the solution of a linear system of algebraic equations. For the case that this linear system is singular, we apply optimization techniques to gain the Bayesian optimal control. These results are extended to generalized linear stochastic systems of difference equations and provide the Bayesian optimal control for the case where the coefficients of these type of systems are non-square matrices. The paper extends the results of the authors developed for system with disturbances belonging to the exponential family

    Diffusion Approximations for Online Principal Component Estimation and Global Convergence

    Full text link
    In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient descent method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for principal component analysis under the additional assumption of bounded samples.Comment: Appeared in NIPS 201

    A detectability criterion and data assimilation for non-linear differential equations

    Full text link
    In this paper we propose a new sequential data assimilation method for non-linear ordinary differential equations with compact state space. The method is designed so that the Lyapunov exponents of the corresponding estimation error dynamics are negative, i.e. the estimation error decays exponentially fast. The latter is shown to be the case for generic regular flow maps if and only if the observation matrix H satisfies detectability conditions: the rank of H must be at least as great as the number of nonnegative Lyapunov exponents of the underlying attractor. Numerical experiments illustrate the exponential convergence of the method and the sharpness of the theory for the case of Lorenz96 and Burgers equations with incomplete and noisy observations

    Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions

    Get PDF
    A truncated sequential procedure is constructed for estimating the drift coefficient at a given state point based on discrete data of ergodic diffusion process. A nonasymptotic upper bound is obtained for a pointwise absolute error risk. The optimal convergence rate and a sharp constant in the bounds are found for the asymptotic pointwise minimax risk. As a consequence, the efficiency is obtained of the proposed sequential procedure.Comment: Published at http://dx.doi.org/10.3150/14-BEJ655 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore