20,726 research outputs found

    Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators

    Get PDF
    The French National Railways Company (SNCF) is interested in the design of a hybrid locomotive based on various storage devices (accumulator, flywheel, and ultracapacitor) and fed by a diesel generator. This paper particularly deals with the integration of a flywheel device as a storage element with a reduced-power diesel generator and accumulators on the hybrid locomotive. First, a power flow model of energy-storage elements (flywheel and accumulator) is developed to achieve the design of the whole traction system. Then, two energy-management strategies based on a frequency approach are proposed. The first strategy led us to a bad exploitation of the flywheel, whereas the second strategy provides an optimal sizing of the storage device. Finally, a comparative study of the proposed structure with a flywheel and the existing structure of the locomotive (diesel generator, accumulators, and ultracapacitors) is presented

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Predictive control for energy management in all/more electric vehicles with multiple energy storage units

    Get PDF
    The paper describes the application of Model Predictive Control (MPC) methodologies for application to electric and hybrid-electric vehicle drive-train formats incorporating multiple energy/power sources. Particular emphasis is given to the co-ordinated management of energy flow from the multiple sources to address issues of extended vehicle range and battery life-time for all-electric drive-trains, and emissions reduction and drive-train torsional oscillations, for hybrid-electric counterparts, whilst accommodating operational constraints and, ultimately, generic non-standard driving cycles

    Bandwidth Based Methodology for Designing a Hybrid Energy Storage System for a Series Hybrid Electric Vehicle with Limited All Electric Mode

    Get PDF
    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller allows the series hybrid’s advantage of tightly managing engine efficiency to be extended to lighter ESS, as compared to the size of the ESS in available products in the market

    Advanced propulsion system for hybrid vehicles

    Get PDF
    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery

    Optimal design and implementation of a drivetrain for an ultra-light electric vehicle

    Get PDF
    This paper presents an integrated design of a drivetrain for a single-person ultra-light electric vehicle (ULEV). To calculate losses and efficiency of the inverter, the permanent magnet synchronous machines (PMSMs) and the gearbox, parameterised analytical models are used. For the gearbox - which has a single gear ratio - the studied parameters are the gear ratio, the number of stages, the number of teeth and the module of each spur gear combination. The novelty of the paper is that it learns how the total average efficiency and the total mass of the drivetrain depend on the gear ratio, on the number of stages in the gearbox, on the motor parameters and on the chosen several driving cycles including the new European driving cycle (NEDC). On the basis of the presented results, it is possible to choose the right configuration of power electronics, PMSM and gearbox in order to have a good trade-off between high efficiency and low mass

    Storage Device Sizing for a Hybrid Railway Traction System by Means of Bicausal Bond Graphs

    Get PDF
    In this paper, the application of bicausal bond graphs for system design in electrical engineering is emphasized. In particular, it is shown how this approach is very useful for model inversion and parameter dimensioning. To illustrate these issues, a hybrid railway traction device is considered as a case study. The synthesis of a storage device (a supercapacitor) included in this system is then discussed

    IVIsion and IVInet – Tool Chain for the Electrification of City Bus Routes

    Get PDF
    AbstractThe Fraunhofer Institute for Transportation and Infrastructure (IVI) developed a method and matching tools (IVIsion and IVInet) that analyzes and evaluates individual bus routes or entire bus route networks regarding their suitability for electric buses.IVInet analyses the vehicle rostering plan and the route network. The software is designed especially for the development of suitable solutions in the transfer from diesel-powered bus networks to electric buses. Based on generalized values for traction energy demands and simplified assumptions regarding the energy demand of auxiliaries, heating, and cooling, the state of charge of the energy storage is analysed for the vehicle circulation under consideration of a boost charging strategy. With an optimization method the optimal number of charging infrastructure will be find under given conditions.IVIsion is an in-house development that comprises several program modules for data processing, for the calculation of driving systems, and for evaluating the calculation results. At least it contains more than 200 preconfigured drive trains for conventional, parallel, and serial hybrid as well as purely electrical driving systems. IVIsion offers opportunity for detailed calculations that take into account models for auxiliary units, the wiring system, drive train cooling, and passenger compartment air conditioning. All powertrain components, auxiliary components and their respective intelligent control strategies are part of the tool. The usage of the tool chain is explained in an application example

    DETECTION PROCESS OF ENERGY LOSS IN ELECTRIC RAILWAY VEHICLES

    Get PDF
    The paper deals with the detection process of energy loss in electric railway hauling vehicles. The importance of efficient energy use in railways and cost-effective rail transport tendency toward regenerative braking energy are considered. In addition, the current situation and improvement opportunities to achieve efficient energy use are examined. Seven measurement series were performed with scheduled Railjet trains between Hegyeshalom and Győr railway stations in Hungary. This railway section is related to the Hungarian State Railways' No. 1 main railway line (between Budapest-Kelenföld and Hegyeshalom state board), which is a part of the international railway line between Budapest and Vienna (capitals of Hungary and Austria, respectively). This double-track, electrified railway line with traditional ballasted superstructures and continuously welded rail tracks is important due to the international passenger and freight transport between Germany, Austria, and Hungary. The value of the regenerative braking energy can be even 20-30% of the total consumed energy. This quite enormous untapped energy can be used for several aims, e.g., for comfort energy demand (air conditioning, heating-cooling, lighting, etc.) or energy-intensive starts. The article also investigates the optimization of regenerative braking energy by seeking the energy-waste locations and the reasons for the significant consumption. The train operator's driving style and habit have been identified as one of the main reasons. Furthermore, train driver assistance systems are recommended to save energy, which is planned for future research

    Preliminary power train design for a state-of-the-art electric vehicle

    Get PDF
    Power train designs which can be implemented within the current state-of-the-art were identified by means of a review of existing electric vehicles and suitable off-the-shelf components. The affect of various motor/transmission combinations on vehicle range over the SAE J227a schedule D cycle was evaluated. The selected, state-of-the-art power train employs a dc series wound motor, SCR controller, variable speed transmission, regenerative braking, drum brakes and radial ply tires. Vehicle range over the SAE cycle can be extended by approximately 20% by the further development of separately excited, shunt wound DC motors and electrical controllers. Approaches which could improve overall power train efficiency, such as AC motor systems, are identified. However, future emphasis should remain on batteries, tires and lightweight structures if substantial range improvements are to be achieved
    corecore