49,199 research outputs found

    On the Olson and the Strong Davenport constants

    Get PDF
    A subset SS of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of SS is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, pp-groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general results, establishing new lower bounds for the cardinality of zero-sumfree sets for various types of groups. The quality of these bounds is explored via the treatment, which is computer-aided, of selected explicit examples. Moreover, we investigate a closely related notion, namely the maximal cardinality of minimal zero-sum sets, i.e., the Strong Davenport constant. In particular, we determine its value for elementary pp-groups of rank at most 22, paralleling and building on recent results on this problem for the Olson constant

    Inverse zero-sum problems and algebraic invariants

    Full text link
    In this article, we study the maximal cross number of long zero-sumfree sequences in a finite Abelian group. Regarding this inverse-type problem, we formulate a general conjecture and prove, among other results, that this conjecture holds true for finite cyclic groups, finite Abelian p-groups and for finite Abelian groups of rank two. Also, the results obtained here enable us to improve, via the resolution of a linear integer program, a result of W. Gao and A. Geroldinger concerning the minimal number of elements with maximal order in a long zero-sumfree sequence of a finite Abelian group of rank two.Comment: 17 pages, to appear in Acta Arithmetic

    Zero-sum problems with congruence conditions

    Full text link
    For a finite abelian group GG and a positive integer dd, let sdN(G)\mathsf s_{d \mathbb N} (G) denote the smallest integer N0\ell \in \mathbb N_0 such that every sequence SS over GG of length S|S| \ge \ell has a nonempty zero-sum subsequence TT of length T0modd|T| \equiv 0 \mod d. We determine sdN(G)\mathsf s_{d \mathbb N} (G) for all d1d\geq 1 when GG has rank at most two and, under mild conditions on dd, also obtain precise values in the case of pp-groups. In the same spirit, we obtain new upper bounds for the Erd{\H o}s--Ginzburg--Ziv constant provided that, for the pp-subgroups GpG_p of GG, the Davenport constant D(Gp)\mathsf D (G_p) is bounded above by 2exp(Gp)12 \exp (G_p)-1. This generalizes former results for groups of rank two

    The system of sets of lengths in Krull monoids under set addition

    Full text link
    Let HH be a Krull monoid with class group GG and suppose that each class contains a prime divisor. Then every element aHa \in H has a factorization into irreducible elements, and the set L(a)\mathsf L (a) of all possible factorization lengths is the set of lengths of aa. We consider the system L(H)={L(a)aH}\mathcal L (H) = \{ \mathsf L (a) \mid a \in H \} of all sets of lengths, and we characterize (in terms of the class group GG) when L(H)\mathcal L (H) is additively closed under set addition.Comment: Revista Matem{\'a}tica Iberoamericana, to appea

    Inverse zero-sum problems II

    Full text link
    Let GG be an additive finite abelian group. A sequence over GG is called a minimal zero-sum sequence if the sum of its terms is zero and no proper subsequence has this property. Davenport's constant of GG is the maximum of the lengths of the minimal zero-sum sequences over GG. Its value is well-known for groups of rank two. We investigate the structure of minimal zero-sum sequences of maximal length for groups of rank two. Assuming a well-supported conjecture on this problem for groups of the form CmCmC_m \oplus C_m, we determine the structure of these sequences for groups of rank two. Combining our result and partial results on this conjecture, yields unconditional results for certain groups of rank two.Comment: new version contains results related to Davenport's constant only; other results will be described separatel

    Consequences of the existence of Auslander-Reiten triangles with applications to perfect complexes for self-injective algebras

    Full text link
    In a k-linear triangulated category (where k is a field) we show that the existence of Auslander-Reiten triangles implies that objects are determined, up to shift, by knowing dimensions of homomorphisms between them. In most cases the objects themselves are distinguished by this information, a conclusion which was also reached under slightly different hypotheses in a theorem of Jensen, Su and Zimmermann. The approach is to consider bilinear forms on Grothendieck groups which are analogous to the Green ring of a finite group. We specialize to the category of perfect complexes for a self-injective algebra, for which the Auslander-Reiten quiver has a known shape. We characterize the position in the quiver of many kinds of perfect complexes, including those of lengths 1, 2 and 3, rigid complexes and truncated projective resolutions. We describe completely the quiver components which contain projective modules. We obtain relationships between the homology of complexes at different places in the quiver, deducing that every self-injective algebra of radical length at least 3 has indecomposable perfect complexes with arbitrarily large homology in any given degree. We find also that homology stabilizes away from the rim of the quiver. We show that when the algebra is symmetric, one of the forms considered earlier is Hermitian, and this allows us to compute its values knowing them only on objects on the rim of the quiver.Comment: 27 page
    corecore