62,691 research outputs found

    State space formulas for stable rational matrix solutions of a Leech problem

    Full text link
    Given stable rational matrix functions GG and KK, a procedure is presented to compute a stable rational matrix solution XX to the Leech problem associated with GG and KK, that is, G(z)X(z)=K(z)G(z)X(z)=K(z) and supz1X(z)1\sup_{|z|\leq 1}\|X(z)\|\leq 1. The solution is given in the form of a state space realization, where the matrices involved in this realization are computed from state space realizations of the data functions GG and KK.Comment: 25 page

    An efficient algorithm for positive realizations

    Full text link
    We observe that successive applications of known results from the theory of positive systems lead to an {\it efficient general algorithm} for positive realizations of transfer functions. We give two examples to illustrate the algorithm, one of which complements an earlier result of \cite{large}. Finally, we improve a lower-bound of \cite{mn2} to indicate that the algorithm is indeed efficient in general

    Order bound for the realization of a combination of positive filters

    Get PDF
    In a problem on the realization of digital ¯lters, initiated by Gersho and Gopinath [8], we extend and complete a remarkable result of Benvenuti, Farina and Anderson [4] on decomposing the transfer function t(z) of an arbitrary linear, asymptotically stable, discrete, time-invariant SISO system as a di®erence t(z) = t1(z) ¡ t2(z) of two positive, asymptotically stable linear systems. We give an easy-to-compute algorithm to handle the general problem, in particular, also the case of transfer functions t(z) with multiple poles, which was left open in [4]. One of the appearing positive, asymptotically stable systems is always 1-dimensional, while the other has dimension depending on the order and, in the case of nonreal poles, also on the location of the poles of t(z). The appearing dimension is seen to be minimal in some cases and it can always be calculated before carrying out the realization

    A new graph parameter related to bounded rank positive semidefinite matrix completions

    Get PDF
    The Gram dimension \gd(G) of a graph GG is the smallest integer k1k\ge 1 such that any partial real symmetric matrix, whose entries are specified on the diagonal and at the off-diagonal positions corresponding to edges of GG, can be completed to a positive semidefinite matrix of rank at most kk (assuming a positive semidefinite completion exists). For any fixed kk the class of graphs satisfying \gd(G) \le k is minor closed, hence it can characterized by a finite list of forbidden minors. We show that the only minimal forbidden minor is Kk+1K_{k+1} for k3k\le 3 and that there are two minimal forbidden minors: K5K_5 and K2,2,2K_{2,2,2} for k=4k=4. We also show some close connections to Euclidean realizations of graphs and to the graph parameter ν=(G)\nu^=(G) of \cite{H03}. In particular, our characterization of the graphs with \gd(G)\le 4 implies the forbidden minor characterization of the 3-realizable graphs of Belk and Connelly \cite{Belk,BC} and of the graphs with ν=(G)4\nu^=(G) \le 4 of van der Holst \cite{H03}.Comment: 31 pages, 6 Figures. arXiv admin note: substantial text overlap with arXiv:1112.596

    Teichmüller spaces and HR structures for hyperbolic surface dynamics

    Get PDF
    We construct a Teichmüller space for the C^{1+}-conjugacy classes of hyperbolic dynamical systems on surfaces. After introducing the notion of an HR structure which associates an affine structure with each of the stable and unstable laminations, we show that there is a one-to-one correspondence between these HR structures and the C^{1+}-conjugacy classes. As part of the proof we construct a canonical representative dynamical system for each HR structure. This has the smoothest holonomies of any representative of the corresponding C^{1+}-conjugacy class. Finally, we introduce solenoid functions and show that they provide a good Teichmüller space
    corecore