4,282 research outputs found

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    Symmetry-breaking Answer Set Solving

    Full text link
    In the context of Answer Set Programming, this paper investigates symmetry-breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We propose a reduction of disjunctive logic programs to a coloured digraph such that permutational symmetries can be constructed from graph automorphisms. Symmetries are then broken by introducing symmetry-breaking constraints. For this purpose, we formulate a preprocessor that integrates a graph automorphism system. Experiments demonstrate its computational impact.Comment: Proceedings of ICLP'10 Workshop on Answer Set Programming and Other Computing Paradig

    Generalized conditional symmetries of evolution equations

    Get PDF
    We analyze the relationship of generalized conditional symmetries of evolution equations to the formal compatibility and passivity of systems of differential equations as well as to systems of vector fields in involution. Earlier results on the connection between generalized conditional invariance and generalized reduction of evolution equations are revisited. This leads to a no-go theorem on determining equations for operators of generalized conditional symmetry. It is also shown that up to certain equivalences there exists a one-to-one correspondence between generalized conditional symmetries of an evolution equation and parametric families of its solutions.Comment: 23 pages, extended versio

    Minisuperspaces: Observables and Quantization

    Get PDF
    A canonical transformation is performed on the phase space of a number of homogeneous cosmologies to simplify the form of the scalar (or, Hamiltonian) constraint. Using the new canonical coordinates, it is then easy to obtain explicit expressions of Dirac observables, i.e.\ phase space functions which commute weakly with the constraint. This, in turn, enables us to carry out a general quantization program to completion. We are also able to address the issue of time through ``deparametrization'' and discuss physical questions such as the fate of initial singularities in the quantum theory. We find that they persist in the quantum theory {\it inspite of the fact that the evolution is implemented by a 1-parameter family of unitary transformations}. Finally, certain of these models admit conditional symmetries which are explicit already prior to the canonical transformation. These can be used to pass to quantum theory following an independent avenue. The two quantum theories --based, respectively, on Dirac observables in the new canonical variables and conditional symmetries in the original ADM variables-- are compared and shown to be equivalent.Comment: 34 page

    Hilbert space of curved \beta\gamma systems on quadric cones

    Full text link
    We clarify the structure of the Hilbert space of curved \beta\gamma systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.Comment: 45 page

    Symmetric measures via moments

    Full text link
    Algebraic tools in statistics have recently been receiving special attention and a number of interactions between algebraic geometry and computational statistics have been rapidly developing. This paper presents another such connection, namely, one between probabilistic models invariant under a finite group of (non-singular) linear transformations and polynomials invariant under the same group. Two specific aspects of the connection are discussed: generalization of the (uniqueness part of the multivariate) problem of moments and log-linear, or toric, modeling by expansion of invariant terms. A distribution of minuscule subimages extracted from a large database of natural images is analyzed to illustrate the above concepts.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6144 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    GUT and flavor models for neutrino masses and mixing

    Full text link
    In the recent years neutrino experiments have studied in detail the phenomenon of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, the problem of flavor in the lepton sector remains an open issue. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.Comment: Added new reference
    • …
    corecore