2 research outputs found

    Topological properties of thinning in 2-D pseudomanifolds

    Get PDF
    International audiencePreserving topological properties of objects during thinning procedures is an important issue in the field of image analysis. In the case of 2-D digital images (i.e. images defined on Z^2) such procedures are usually based on the notion of simple point. In contrast to the situation in Z^n , n>=3, it was proved in the 80s that the exclusive use of simple points in Z^2 was indeed sufficient to develop thinning procedures providing an output that is minimal with respect to the topological characteristics of the object. Based on the recently introduced notion of minimal simple set (generalising the notion of simple point), we establish new properties related to topology-preserving thinning in 2-D spaces which extend, in particular, this classical result to cubical complexes in 2-D pseudomanifolds

    On parallel thinning algorithms: minimal non-simple sets, P-simple points and critical kernels

    Get PDF
    International audienceCritical kernels constitute a general framework in the category of abstract complexes for the study of parallel homotopic thinning in any dimension. In this article, we present new results linking critical kernels to minimal non-simple sets (MNS) and P-simple points, which are notions conceived to study parallel thinning in discrete grids. We show that these two previously introduced notions can be retrieved, better understood and enriched in the framework of critical kernels. In particular, we propose new characterizations which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting P-simple points and minimal non-simple sets
    corecore